Nonlinear hierarchical editing: A powerful framework for face editing

被引:0
|
作者
Niu, Yongjie [1 ,2 ]
Zhou, Pengbo [3 ]
Chi, Hao [4 ]
Zhou, Mingquan [1 ]
机构
[1] Northwest Univ, Sch Informat Sci & Technol, Xian, Peoples R China
[2] Yanan Univ, Coll Math & Comp Sci, Yanan, Peoples R China
[3] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing, Peoples R China
[4] Shandong Water Conservancy Vocat Coll, Dept Informat Engn, Rizhao, Peoples R China
关键词
Nonlinear editing path; Hierarchical editing; Attribute entanglement; Model collapse; Effective attribute change magnitude; Continuous editing;
D O I
10.1016/j.engappai.2024.108706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN's latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer -by -layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-theart, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Conceptual and Hierarchical Latent Space Decomposition for Face Editing
    Ozkan, Savas
    Ozay, Mete
    Robinson, Tom
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 7214 - 7223
  • [2] Adaptive Nonlinear Latent Transformation for Conditional Face Editing
    Huang, Zhizhong
    Ma, Siteng
    Zhang, Junping
    Shan, Hongming
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 20965 - 20974
  • [3] A Text Error Correction Model based on Hierarchical Editing Framework
    Ye J.-M.
    Luo D.-X.
    Chen S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (02): : 401 - 407
  • [4] Gene Editing: a Powerful Tool for Cancer Immunotherapy
    Yahya, Shaymaa M. M.
    Mohamed, Shimaa Ibrahim Abdelmenym
    Yahya, Shereen M. M.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2023, 13 (01):
  • [5] A Demonstration of a Configurable Editing Framework
    Lumley, John
    Gimson, Roger
    Rees, Owen
    DOCENG'08: PROCEEDINGS OF THE EIGHTH ACM SYMPOSIUM ON DOCUMENT ENGINEERING, 2008, : 217 - 218
  • [6] Editing like Humans: A Contextual, Multimodal Framework for Automated Video Editing
    Koorathota, Sharath
    Adelman, Patrick
    Cotton, Kelly
    Sajda, Paul
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1701 - 1709
  • [7] Face Generation and Editing With StyleGAN: A Survey
    Melnik, Andrew
    Miasayedzenkau, Maksim
    Makaravets, Dzianis
    Pirshtuk, Dzianis
    Akbulut, Eren
    Holzmann, Dennis
    Renusch, Tarek
    Reichert, Gustav
    Ritter, Helge
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3557 - 3576
  • [8] Reference Guided Face Component Editing
    Deng, Qiyao
    Cao, Jie
    Liu, Yunfan
    Chai, Zhenhua
    Li, Qi
    Sun, Zhenan
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 502 - 508
  • [9] Nonlinear editing by generative video
    Jasinschi, RS
    Moura, JMF
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 1220 - 1223
  • [10] High Resolution Face Age Editing
    Yao, Xu
    Puy, Gilles
    Newson, Alasdair
    Gousseau, Yann
    Hellier, Pierre
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8624 - 8631