Large Language Models (LLMs) in Engineering Education: A Systematic Review and Suggestions for Practical Adoption

被引:4
|
作者
Filippi, Stefano [1 ]
Motyl, Barbara [1 ]
机构
[1] Univ Udine, Polytech Dept Engn & Architecture DPIA, I-33100 Udine, Italy
关键词
engineering education; large language models-LLMs; LLM-based tools; systematic review; PRISMA;
D O I
10.3390/info15060345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of large language models (LLMs) is now spreading in several areas of research and development. This work is concerned with systematically reviewing LLMs' involvement in engineering education. Starting from a general research question, two queries were used to select 370 papers from the literature. Filtering them through several inclusion/exclusion criteria led to the selection of 20 papers. These were investigated based on eight dimensions to identify areas of engineering disciplines that involve LLMs, where they are most present, how this involvement takes place, and which LLM-based tools are used, if any. Addressing these key issues allowed three more specific research questions to be answered, offering a clear overview of the current involvement of LLMs in engineering education. The research outcomes provide insights into the potential and challenges of LLMs in transforming engineering education, contributing to its responsible and effective future implementation. This review's outcomes could help address the best ways to involve LLMs in engineering education activities and measure their effectiveness as time progresses. For this reason, this study addresses suggestions on how to improve activities in engineering education. The systematic review on which this research is based conforms to the rules of the current literature regarding inclusion/exclusion criteria and quality assessments in order to make the results as objective as possible and easily replicable.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Practical and ethical challenges of large language models in education: A systematic scoping review
    Yan, Lixiang
    Sha, Lele
    Zhao, Linxuan
    Li, Yuheng
    Martinez-Maldonado, Roberto
    Chen, Guanliang
    Li, Xinyu
    Jin, Yueqiao
    Gasevic, Dragan
    BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2024, 55 (01) : 90 - 112
  • [2] The ethics of ChatGPT in medicine and healthcare: a systematic review on Large Language Models (LLMs)
    Haltaufderheide, Joschka
    Ranisch, Robert
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [3] Practical Application of AI and Large Language Models in Software Engineering Education
    Kozov, Vasil
    Ivanova, Galina
    Atanasova, Desislava
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 690 - 696
  • [4] Large Language Models for Software Engineering: A Systematic Literature Review
    Hou, Xinyi
    Zhao, Yanjie
    Liu, Yue
    Yang, Zhou
    Wang, Kailong
    Li, Li
    Luo, Xiapu
    Lo, David
    Grundy, John
    Wang, Haoyu
    ACM Transactions on Software Engineering and Methodology, 2024, 33 (08)
  • [5] Enhancing Accessibility in Software Engineering Projects with Large Language Models (LLMs)
    Aljedaani, Wajdi
    Eler, Marcelo Medeiros
    Parthasarathy, P. D.
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 1, 2025, : 25 - 31
  • [6] Enhancing Accessibility in Software Engineering Projects with Large Language Models (LLMs)
    Aljedaani, Wajdi
    Eler, Marcelo Medeiros
    Parthasarathy, P. D.
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 2, 2025, : 25 - 31
  • [7] A systematic review of large language models and their implications in medical education
    Lucas, Harrison C.
    Upperman, Jeffrey S.
    Robinson, Jamie R.
    MEDICAL EDUCATION, 2024, 58 (11) : 1276 - 1285
  • [8] GPT, large language models (LLMs) and generative artificial intelligence (GAI) models in geospatial science: a systematic review
    Wang, Siqin
    Hu, Tao
    Xiao, Huang
    Li, Yun
    Zhang, Ce
    Ning, Huan
    Zhu, Rui
    Li, Zhenlong
    Ye, Xinyue
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [9] Mitigating Insecure Outputs in Large Language Models(LLMs): A Practical Educational Module
    Barek, Md Abdul
    Rahman, Md Mostafizur
    Akter, Mst Shapna
    Riad, A. B. M. Kamrul Islam
    Rahman, Md Abdur
    Shahriar, Hossain
    Rahman, Akond
    Wu, Fan
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 2424 - 2429
  • [10] Innovation and application of Large Language Models (LLMs) in dentistry - a scoping review
    Umer, Fahad
    Batool, Itrat
    Naved, Nighat
    BDJ OPEN, 2024, 10 (01)