Rapid classification of rice according to storage duration via near-infrared spectroscopy and machine learning

被引:2
|
作者
Zhai, Chen [1 ]
Wang, Wenxiu [3 ]
Zhang, Shengjie [3 ]
Qian, Chengjing [2 ]
Gao, Man [4 ]
Feng, Xiaohui [1 ]
机构
[1] Chinese Acad Agr Sci, State Key Lab Anim Nutr, Inst Anim Sci, Beijing 100193, Peoples R China
[2] COFCO Corp, Nutr & Hlth Res Inst, Beijing Key Lab Nutr & Hlth & Food Safety, Beijing 102209, Peoples R China
[3] Hebei Agr Univ, Coll Food Sci & Technol, Baoding 071000, Peoples R China
[4] Beijing Univ Technol, Dept Environm & Life, Beijing 100124, Peoples R China
来源
TALANTA OPEN | 2024年 / 10卷
关键词
Near-infrared spectroscopy; Machine learning algorithms; Rice; Storage duration; IDENTIFICATION;
D O I
10.1016/j.talo.2024.100343
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Rice is the most important staple crop for more than half of the world's population. As rice quality can deteriorate during storage, methods that can effectively classify rice according to its storage duration are essential. However, existing methods of assessing rice storage time are time-consuming, laborious, and incompatible with modern industrial processing technologies. Therefore, we investigated the ability of near-infrared spectroscopy combined with machine learning algorithms to distinguish rice storage duration. A total of 482 rice samples were analyzed, which included 74, 100, and 308 samples produced during 2015-2016, 2017-2018, and 2020-2021, respectively. Five pre-processing methods were initially applied to the spectra to enhance the accuracy of the discrimination model. Subsequently, two-dimensional correlation spectroscopy and competitive adaptive reweighted sampling (CARS) were used to extract the characteristic spectra associated with storage time. Finally, three pattern recognition methods (K-nearest neighbor analysis, linear discriminant analysis, and least squares support vector machine (LS-SVM)) were compared for their effectiveness in constructing classification models. The results indicated that the best model for identifying the storage duration of rice was established after spectral pre-processing with the standard normal variate and first derivative, using the CARS algorithm to select feature wavelengths, and applying the LS-SVM modeling method, which together yielded correct identification rates of 99.72 % and 91.67 % for the calibration and validation sets, respectively. Thus, we propose near-infrared spectroscopy coupled with machine learning algorithms as an effective approach for classifying rice according to storage duration, which can facilitate evaluations of rice freshness in the market.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Near-Infrared spectroscopy combined with machine learning methods for distinguishment of the storage years of rice
    Huang, Fuping
    Peng, Yimei
    Li, Linghui
    Ye, Shitong
    Hong, Shaoyong
    INFRARED PHYSICS & TECHNOLOGY, 2023, 133
  • [2] Rapid Classification of Sugarcane Nodes and Internodes Using Near-Infrared Spectroscopy and Machine Learning Techniques
    Veerasakulwat, Siramet
    Sitorus, Agustami
    Udompetaikul, Vasu
    SENSORS, 2024, 24 (22)
  • [3] Application of Near-Infrared Spectroscopy for Rice Characterization Using Machine Learning
    Rizwana S.
    Hazarika M.K.
    Journal of The Institution of Engineers (India): Series A, 2020, 101 (04) : 579 - 587
  • [4] Rapid identification of the storage duration and species of sliced boletes using near-infrared spectroscopy
    Chen, Jian
    Li, Jie qing
    Li, Tao
    Liu, Hong gao
    Wang, Yuan zhong
    JOURNAL OF FOOD SCIENCE, 2022, 87 (07) : 2908 - 2919
  • [5] A Review of Machine Learning for Near-Infrared Spectroscopy
    Zhang, Wenwen
    Kasun, Liyanaarachchi Chamara
    Wang, Qi Jie
    Zheng, Yuanjin
    Lin, Zhiping
    SENSORS, 2022, 22 (24)
  • [6] Rapid discrimination of coal geographical origin via near-infrared spectroscopy combined with machine learning algorithms
    Yu, Xinhui
    Guo, Weidong
    Wu, Nan
    Zou, Liang
    Lei, Meng
    INFRARED PHYSICS & TECHNOLOGY, 2020, 105
  • [7] Near-infrared spectroscopy for rapid classification of fruit spirits
    M. Jakubíková
    J. Sádecká
    A. Kleinová
    P. Májek
    Journal of Food Science and Technology, 2016, 53 : 2797 - 2803
  • [8] Near-infrared spectroscopy for rapid classification of fruit spirits
    Jakubikova, M.
    Sadecka, J.
    Kleinova, A.
    Majek, P.
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2016, 53 (06): : 2797 - 2803
  • [9] Rapid classification of peanut varieties for their processing into peanut butters based on near-infrared spectroscopy combined with machine learning
    Yu, Hongwei
    Erasmus, Sara W.
    Wang, Qiang
    Liu, Hongzhi
    van Ruth, Saskia M.
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2023, 120
  • [10] Use of machine learning to predict feed components via near-infrared spectroscopy
    Dorea, J. R. R.
    Karlen, J.
    Rosa, G. J. M.
    JOURNAL OF DAIRY SCIENCE, 2019, 102 : 333 - 333