SayCanPay: Heuristic Planning with Large Language Models Using Learnable Domain Knowledge

被引:0
|
作者
Hazra, Rishi [1 ]
Dos Martires, Pedro Zuidberg [1 ]
De Raedt, Luc [1 ,2 ]
机构
[1] Orebro Univ, Ctr Appl Autonomous Sensor Syst AASS, Orebro, Sweden
[2] Katholieke Univ Leuven, Leuven, Belgium
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large Language Models (LLMs) have demonstrated impressive planning abilities due to their vast "world knowledge". Yet, obtaining plans that are both feasible (grounded in affordances) and cost-effective (in plan length), remains a challenge, despite recent progress. This contrasts with heuristic planning methods that employ domain knowledge (formalized in action models such as PDDL) and heuristic search to generate feasible, optimal plans. Inspired by this, we propose to combine the power of LLMs and heuristic planning by leveraging the world knowledge of LLMs and the principles of heuristic search. Our approach, SayCanPay, employs LLMs to generate actions (Say) guided by learnable domain knowledge, that evaluates actions' feasibility (Can) and long-term reward/payoff (Pay), and heuristic search to select the best sequence of actions. Our contributions are (1) a novel framing of the LLM planning problem in the context of heuristic planning, (2) integrating grounding and cost-effective elements into the generated plans, and (3) using heuristic search over actions. Our extensive evaluations show that our model surpasses other LLM planning approaches.
引用
收藏
页码:20123 / 20133
页数:11
相关论文
共 50 条
  • [1] Quantifying Domain Knowledge in Large Language Models
    Sayenju, Sudhashree
    Aygun, Ramazan
    Franks, Bill
    Johnston, Sereres
    Lee, George
    Choi, Hansook
    Modgil, Girish
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 193 - 194
  • [2] Navigation with Large Language Models: Semantic Guesswork as a Heuristic for Planning
    Shah, Dhruv
    Equi, Michael
    Osinski, Blazej
    Xia, Fei
    Ichter, Brian
    Levine, Sergey
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [3] Automated Retrosynthesis Planning of Macromolecules Using Large Language Models and Knowledge Graphs
    Ma, Qinyu
    Zhou, Yuhao
    Li, Jianfeng
    MACROMOLECULAR RAPID COMMUNICATIONS, 2025,
  • [4] Large Language Models as Planning Domain Generators (Student Abstract)
    Oswald, James
    Srinivas, Kavitha
    Kokel, Harsha
    Lee, Junkyu
    Katz, Michael
    Sohrabi, Shirin
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23604 - 23605
  • [5] Enhancing Large Language Models Through External Domain Knowledge
    Welz, Laslo
    Lanquillon, Carsten
    ARTIFICIAL INTELLIGENCE IN HCI, PT III, AI-HCI 2024, 2024, 14736 : 135 - 146
  • [6] Distilling Script Knowledge from Large Language Models for Constrained Language Planning
    Yuan, Siyu
    Chen, Jiangjie
    Fu, Ziquan
    Ge, Xuyang
    Shah, Soham
    Jankowski, Charles Robert
    Xiao, Yanghua
    Yang, Deqing
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 4303 - 4325
  • [7] Large Language Models as Commonsense Knowledge for Large-Scale Task Planning
    Zhao, Zirui
    Lee, Wee Sun
    Hsu, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Knowledge Augmentation and Task Planning in Large Language Models for Dexterous Grasping
    Li, Hui
    Tran, Dang
    Zhang, Xinyu
    He, Hongsheng
    2023 IEEE-RAS 22ND INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, HUMANOIDS, 2023,
  • [9] A comparative analysis of knowledge injection strategies for large language models in the domain
    Cadeddu, Andrea
    Chessa, Alessandro
    De Leo, Vincenzo
    Fenu, Gianni
    Motta, Enrico
    Osborne, Francesco
    Recupero, Diego Reforgiato
    Salatino, Angelo
    Secchi, Luca
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [10] Poisoning medical knowledge using large language models
    Yang, Junwei
    Xu, Hanwen
    Mirzoyan, Srbuhi
    Chen, Tong
    Liu, Zixuan
    Liu, Zequn
    Ju, Wei
    Liu, Luchen
    Xiao, Zhiping
    Zhang, Ming
    Wang, Sheng
    NATURE MACHINE INTELLIGENCE, 2024, 6 (10) : 1156 - 1168