STABILITY AND GENERICITY OF BANG-BANG CONTROLS IN AFFINE PROBLEMS

被引:1
|
作者
Corella, Alberto Dominguez [1 ]
Wachsmuth, Gerd [2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Chair Dynam Control Machine Learning & Numer Alexa, Dept Math, Erlangen, Germany
[2] Brandenburg Tech Univ Cottbus Senftenberg, Inst Math, Cottbus, Germany
基金
奥地利科学基金会;
关键词
bang-bang; affine optimal control; stability; genericity; QUADRATIC CONTROL-PROBLEMS; STRONG-CONVERGENCE; 2ND-ORDER ANALYSIS; DISCRETIZATION; APPROXIMATION; REGULARITY; MAPPINGS; WEAK;
D O I
10.1137/23M1586446
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the role of the bang-bang property in affine optimal control problems. We show that many essential stability properties of affine problems are only satisfied when minimizers are bang-bang. We employ Stegall's variational principle to prove that almost any linear perturbation leads to a bang-bang strict global minimizer. Examples are given to show the applicability of our results to specific optimal control problems.
引用
收藏
页码:1669 / 1689
页数:21
相关论文
共 50 条
  • [1] On stability of bang-bang type controls
    Felgenhauer, U
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (06) : 1843 - 1867
  • [2] LIMITING BEHAVIOR OF BANG-BANG CONTROLS FOR SOBOLEV PROBLEMS
    WHITE, LW
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 38 (02) : 275 - 285
  • [3] A note on the approximation of elliptic control problems with bang-bang controls
    Klaus Deckelnick
    Michael Hinze
    Computational Optimization and Applications, 2012, 51 : 931 - 939
  • [4] A note on the approximation of elliptic control problems with bang-bang controls
    Deckelnick, Klaus
    Hinze, Michael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (02) : 931 - 939
  • [5] Sensitivity analysis of optimal control problems with bang-bang controls
    Kim, JHR
    Maurer, H
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 3281 - 3286
  • [6] Holder Regularity in Bang-Bang Type Affine Optimal Control Problems
    Corella, Alberto Dominguez
    Veliov, Vladimir M.
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 306 - 313
  • [7] BANG-BANG CONTROLS OF POINT PROCESSES
    BREMAUD, P
    ADVANCES IN APPLIED PROBABILITY, 1976, 8 (02) : 385 - 394
  • [8] Stability for bang-bang control problems of partial differential equations
    Nguyen Thanh Qui
    Wachsmuth, Daniel
    OPTIMIZATION, 2018, 67 (12) : 2157 - 2177
  • [9] Lipschitz stability of broken extremals in bang-bang control problems
    Felgenhauer, Ursula
    LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 317 - 325
  • [10] Suppression of decoherence using bang-bang controls
    Wang, Yan-Hui
    Liu, Xiao-Shu
    Liu, Yang
    Liu, Wen-Zhang
    Long, Gui Lu
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1269 - +