Observation of the Chiral Soliton Lattice above Room Temperature

被引:0
|
作者
Brearton, R. [1 ,2 ]
Moody, S. H. [3 ]
Turnbull, L. A. [3 ]
Hatton, P. D. [3 ]
Stefancic, A. [4 ]
Balakrishnan, G. [4 ]
van der Laan, G. [1 ]
Hesjedal, T. [1 ,2 ]
机构
[1] Harwell Sci & Innovat Campus, Diamond Light Source, Didcot OX11 0DE, England
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[3] Univ Durham, Dept Phys, Durham DH1 3LE, England
[4] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
来源
ADVANCED PHYSICS RESEARCH | 2023年 / 2卷 / 07期
关键词
chiral soliton lattices; Dzyaloshinskii-Moriya interaction; magnetic solitons; topological spin textures; transmission resonant elastic X-ray scattering; ANISOTROPY; SKYRMIONS;
D O I
10.1002/apxr.202200116
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic chiral soliton lattices (CSLs) emerge from the helical phase in chiral magnets when magnetic fields are applied perpendicular to the helical propagation vector, and they show great promise for next-generation magnetic memory applications. These one-dimensional structures are previously observed at low temperatures in samples with uniaxial symmetry. Here, it is found that in-plane fields are the key to stabilizing the CSL in cubic Co8Zn10Mn2 over the entire temperature range from 15 K to below the Curie temperature (365 K). Using small-angle resonant elastic X-ray scattering, it is observed that the CSL is stabilized with an arbitrary in-plane propagation vector, while its thin plate geometry plays a deciding role in the soliton wavelength as a function of applied field. This work paves the way for high temperature, real world applications of soliton physics in future magnetic memory devices. The chiral soliton lattice (CSL) state is demonstrated at temperatures of up to 355 K in Co8Zn10Mn2. In contrast to the low-temperature CSL material Cr1/3NbS2, the CSL state in Co8Zn10Mn2 is not governed by crystallographic constraints. Instead, it is controlled by in-plane fields, enabling their device integration and opening the door to room-temperature solitonic applications. image
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Temperature dependent lattice constant of InSb above room temperature
    Breivik, Magnus
    Nilsen, Tron Arne
    Fimland, Bjorn-Ove
    JOURNAL OF CRYSTAL GROWTH, 2013, 381 : 165 - 168
  • [2] On the lattice parameters of sodium niobate at room temperature and above
    Darlington, CNW
    Knight, KS
    PHYSICA B-CONDENSED MATTER, 1999, 266 (04) : 368 - 372
  • [3] Formation of a chiral soliton lattice
    Higaki, Tetsutaro
    Kamada, Kohei
    Nishimura, Kentaro
    PHYSICAL REVIEW D, 2022, 106 (09)
  • [4] Chiral Magnetic Soliton Lattice on a Chiral Helimagnet
    Togawa, Y.
    Koyama, T.
    Takayanagi, K.
    Mori, S.
    Kousaka, Y.
    Akimitsu, J.
    Nishihara, S.
    Inoue, K.
    Ovchinnikov, A. S.
    Kishine, J.
    PHYSICAL REVIEW LETTERS, 2012, 108 (10)
  • [5] Observation of Collective Resonance Modes in a Chiral Spin Soliton Lattice with Tunable Magnon Dispersion
    Shimamoto, Y.
    Matsushima, Y.
    Hasegawa, T.
    Kousaka, Y.
    Proskurin, I
    Kishine, J.
    Ovchinnikov, A. S.
    Goncalves, F. J. T.
    Togawa, Y.
    PHYSICAL REVIEW LETTERS, 2022, 128 (24)
  • [6] Observation of exciton polariton condensation in a perovskite lattice at room temperature
    Jun Zhang
    Journal of Semiconductors, 2020, 41 (03) : 3
  • [7] Observation of exciton polariton condensation in a perovskite lattice at room temperature
    Su, Rui
    Ghosh, Sanjib
    Wang, Jun
    Liu, Sheng
    Diederichs, Carole
    Liew, Timothy C. H.
    Xiong, Qihua
    NATURE PHYSICS, 2020, 16 (03) : 301 - +
  • [8] Observation of exciton polariton condensation in a perovskite lattice at room temperature
    Zhang, Jun
    JOURNAL OF SEMICONDUCTORS, 2020, 41 (03)
  • [9] Observation of exciton polariton condensation in a perovskite lattice at room temperature
    Jun Zhang
    Journal of Semiconductors, 2020, (03) : 3 - 3
  • [10] Observation of exciton polariton condensation in a perovskite lattice at room temperature
    Rui Su
    Sanjib Ghosh
    Jun Wang
    Sheng Liu
    Carole Diederichs
    Timothy C. H. Liew
    Qihua Xiong
    Nature Physics, 2020, 16 : 301 - 306