Algebraic uniqueness of Kahler-Ricci flow limits and optimal degenerations of Fano varieties

被引:1
|
作者
Han, Jiyuan [1 ]
Li, Chi [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08901 USA
基金
美国国家科学基金会;
关键词
UNIFORM K-STABILITY; EINSTEIN METRICS; OKOUNKOV BODIES; CONVEX-BODIES; LOWER BOUNDS; VOLUME; APPROXIMATION; VALUATIONS; EXISTENCE; MANIFOLDS;
D O I
10.2140/gt.2024.28.539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any Fano manifold X, the special R-test configuration that minimizes the H-NA functional is unique and has a K-semistable Q-Fano central fiber (W; epsilon). Moreover there is a unique K-polystable degeneration of (W; epsilon). As an application, we confirm the conjecture of Chen, Sun and Wang about the algebraic uniqueness for Kahler-Ricci flow limits on Fano manifolds, which implies that the Gromov-Hausdorff limit of the flow does not depend on the choice of initial Kahler metrics. The results are achieved by studying algebraic optimal degeneration problems via new functionals for real valuations over Q-Fano varieties, which are analogous to the minimization problem for normalized volumes.
引用
收藏
页码:539 / 592
页数:54
相关论文
共 50 条
  • [1] THE KAHLER-RICCI FLOW AND OPTIMAL DEGENERATIONS
    Dervan, Ruadhai
    Szekelyhidi, Gabor
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 116 (01) : 187 - 203
  • [2] GENERALIZED KAHLER-RICCI FLOW ON TORIC FANO VARIETIES
    Apostolov, Vestislav
    Streets, Jeffrey
    Ustinovskiy, Yury
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 1 - 41
  • [3] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [4] On the Kahler-Ricci flow on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (02) : 573 - 581
  • [5] The Kahler-Ricci Flow on Fano Manifolds
    Cao, Huai-Dong
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 239 - 297
  • [6] The Kahler-Ricci flow on Fano bundles
    Fu, Xin
    Zhang, Shijin
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1605 - 1626
  • [7] Convergence of the Kahler-Ricci flow on Fano manifolds
    Tian, Gang
    Zhu, Xiaohua
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 678 : 223 - 245
  • [8] Kahler-Ricci flow on stable Fano manifolds
    Tosatti, Valentino
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 640 : 67 - 84
  • [9] Stability of Kahler-Ricci flow on a Fano manifold
    Zhu, Xiaohua
    MATHEMATISCHE ANNALEN, 2013, 356 (04) : 1425 - 1454
  • [10] Limits of solutions to the Kahler-Ricci flow
    Cao, HD
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 257 - 272