The G-Drazin Inverse of an Operator Matrix over Banach Spaces

被引:0
|
作者
Tayebi, Farzaneh [1 ]
Ashrafi, Nahid [1 ]
Bahmani, Rahman [1 ]
Abdolyousefi, Marjan sheibani [2 ]
机构
[1] Semnan Univ, Dept Math Stat & Comp Sci, Semnan, Iran
[2] Semnan Univ, Farzanegan Campmus, Semnan, Iran
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2024年 / 64卷 / 02期
关键词
generalized Drazin inverse; additive property; operator matrix; spectral idempotent; BLOCK REPRESENTATIONS; CLINES FORMULA; SUM;
D O I
10.5666/KMJ.2024.64.2.205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a Banach algebra. An element a is an element of A has generalized Drazin inverse if there exists b is an element of A such that b = bab, ab = ba, a - a (2) b is an element of A (qnil) . New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013 and of Wang, Huang and Chen from 2017. Appling these results to 2 x2 operator matrices we also generalize results of a paper of Deng, Cvetkovic<acute accent>-Ilic<acute accent> and Wei from 2010.
引用
收藏
页码:205 / 218
页数:14
相关论文
共 50 条