Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking

被引:106
|
作者
Kuang, Yang [1 ]
Yang, Zhihao [1 ]
Zhu, Meiling [1 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
piezoelectric energy harvester; human motion; wearable energy harvester; frequency up-conversion; magnetic plucking; GENERATING ELECTRICITY; WALKING;
D O I
10.1088/0964-1726/25/8/085029
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Piezoelectric energy harvesting from human motion is challenging because of the low energy conversion efficiency at a low-frequency excitation. Previous studies by the present authors showed that mechanical plucking of a piezoelectric bimorph cantilever was able to provide frequency up-conversion from a few hertz to the resonance frequency of the cantilever, and that a piezoelectric knee-joint energy harvester (KEH) based on this mechanism was able to generate sufficient energy to power a wireless sensor node. However, the direct contact between the bimorph and the plectra leads to reduced longevity and considerable noise. To address these limitations, this paper introduces a magnetic plucking mechanism to replace the mechanical plucking in the KEH, where primary magnets (PM) actuated by knee-joint motion excite the bimorphs through a secondary magnet (SM) fixed on the bimorphs tip and so achieve frequency up-conversion. The key parameters of the new KEH that affect the energy output of a plucked bimorph were investigated. It was found that the bimorph plucked by a repulsive magnetic force produced a higher energy output than an attractive force. The energy output peaked at 32 PMs and increased with a decreasing gap between PM and SM as well as an increasing rotation speed of the PMs. Based on these investigations, a KEH with high energy output was prototyped, which featured 8 piezoelectric bimorphs plucked by 32 PMs through repulsive magnetic forces. The gap between PM and SM was set to 1.5mm with a consideration on both the energy output and longevity of the bimorphs. When actuated by knee-joint motion of 0.9 Hz, the KEH produced an average power output of 5.8 mW with a life time > 7.3 h (about 3.8 x 10(5) plucking excitations).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A magnetic plucking frequency up-conversion piezoelectric energy harvester with nonlinear energy sink structure
    Shen, Jiwei
    Wan, Shui
    Fu, Jundong
    Li, Shuli
    Lv, Debao
    Dekemele, Kevin
    APPLIED ENERGY, 2024, 376
  • [2] A Piezoelectric Wave Energy Harvester Using Plucking-Driven and Frequency Up-Conversion Mechanism
    Chen, Shao-En
    Yang, Ray-Yeng
    Qiu, Zeng-Hui
    Wu, Chia-Che
    ENERGIES, 2021, 14 (24)
  • [3] Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications
    Pozzi, Michele
    Zhu, Meiling
    SMART MATERIALS AND STRUCTURES, 2012, 21 (05)
  • [4] Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact
    Amin Abedini
    Fengxia Wang
    The European Physical Journal Special Topics, 2019, 228 : 1459 - 1474
  • [5] Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact
    Abedini, Amin
    Wang, Fengxia
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (06): : 1459 - 1474
  • [6] A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors
    Huicong Liu
    Cho Jui Tay
    Chenggen Quan
    Takeshi Kobayashi
    Chengkuo Lee
    Microsystem Technologies, 2011, 17 : 1747 - 1754
  • [7] A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors
    Liu, Huicong
    Tay, Cho Jui
    Quan, Chenggen
    Kobayashi, Takeshi
    Lee, Chengkuo
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2011, 17 (12): : 1747 - 1754
  • [8] Analysis of magnetic plucking dynamics in a frequency up-converting piezoelectric energy harvester
    Dauksevicius, Rolanas
    Kleiva, Arunas
    Grigaliunas, Valdes
    SMART MATERIALS AND STRUCTURES, 2018, 27 (08)
  • [9] DISCONTINUOUS DYNAMICS OF A FREQUENCY UP-CONVERSION PIEZOELECTRIC HARVESTER
    Onsorynezhad, Saeed
    Wang, Fengxia
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 8, 2020,
  • [10] Theoretical, numerical, and experimental studies of a frequency up-conversion piezoelectric energy harvester
    Li, Zhongjie
    Peng, Xuzhang
    Hu, Guobiao
    Peng, Yan
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 223