共 50 条
Sub-5 nm Ultrathin In2O3 Transistors for High-Performance and Low-Power Electronic Applications
被引:0
|作者:
Xu, Linqiang
[1
,2
,3
]
Xu, Lianqiang
[4
]
Lan, Jun
[5
]
Li, Yida
[5
]
Li, Qiuhui
[1
,2
]
Wang, Aili
[6
,7
]
Guo, Ying
[8
]
Ang, Yee Sin
[3
]
Quhe, Ruge
[9
,10
]
Lu, Jing
[1
,2
,11
,12
,13
,14
]
机构:
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[3] Singapore Univ Technol & Design SUTD, Sci Math & Technol, Singapore 487372, Singapore
[4] Ningxia Normal Univ, Engn Res Ctr Nanostruct & Funct Mat, Sch Phys & Elect Informat Engn, Guyuan 756000, Peoples R China
[5] Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
[6] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[7] Zhejiang Univ, Zhejiang Univ Univ Illinois Urbana Champaign Inst, Haining 314400, Peoples R China
[8] Shaanxi Univ Technol, Sch Phys & Telecommun Engn, Shaanxi Key Lab Catalysis, Hanzhong 723001, Peoples R China
[9] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[10] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[11] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[12] Beijing Key Lab Magnetoelect Mat & Devices, Beijing 100871, Peoples R China
[13] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226000, Peoples R China
[14] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
基金:
中国国家自然科学基金;
关键词:
ultrathin In2O3;
wide bandgap;
sub-5 nm gate length;
ab initio quantum transport simulation;
high-performance and low-power electronics;
PROSPECTS;
D O I:
暂无
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Ultrathin oxide semiconductors are promising candidates for back-end-of-line (BEOL) compatible transistors and monolithic three-dimensional integration. Experimentally, ultrathin indium oxide (In2O3) field-effect transistors (FETs) with thicknesses down to 0.4 nm exhibit an extremely high drain current (10(4) mu A/mu m) and transconductance (4000 mu S/mu m). Here, we employ ab initio quantum transport simulation to investigate the performance limit of sub-5 nm gate length (L-g) ultrathin In2O3 FETs. Based on the International Technology Roadmap for Semiconductors (ITRS) criteria for high-performance (HP) devices, the scaling limit of ultrathin In2O3 FETs can reach 2 nm in terms of on-state current, delay time, and power dissipation. The wide bandgap nature of ultrathin In2O3 (3.0 eV) renders it a suitable candidate for ITRS low-power (LP) electronics with L-g down to 3 nm. Notably, both the HP and LP ultrathin In2O3 FETs exhibit superior energy-delay products as compared to those of other common 2D semiconductors such as monolayer MoS2 and MoTe2. These findings unveil the potential of ultrathin In2O3 in HP and LP nanoelectronic device applications.
引用
收藏
页码:23536 / 23543
页数:8
相关论文