Three Problems on Trigonometric Sums

被引:0
|
作者
Yves MEYER
机构
[1] CMLA,ENSParis-Saclay
关键词
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
Let Λ ? R~n be a uniformly discrete set and let CΛ be the vector space consisting of all mean periodic functions whose spectrum is simple and contained in Λ. If Λ is a gentle set then for every f ∈ CΛ we have f(x) = O(ωΛ(x)) as |x| →∞ and ωΛ(x) can be estimated(Theorem 4.1). This line of research was proposed by Jean-Pierre Kahane in 1957.
引用
收藏
页码:721 / 727
页数:7
相关论文
共 50 条
  • [1] Three Problems on Trigonometric Sums
    Yves MEYER
    Acta Mathematica Sinica,English Series, 2019, (06) : 721 - 727
  • [2] Three Problems on Trigonometric Sums
    Meyer, Yves
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (06) : 721 - 727
  • [3] Three Problems on Trigonometric Sums
    Yves Meyer
    Acta Mathematica Sinica, English Series, 2019, 35 : 721 - 727
  • [4] TRIGONOMETRIC SUMS
    KOROBOV, NM
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (01): : 14 - 17
  • [5] MULTIPLE TRIGONOMETRIC SUMS
    ARKHIPOV, GI
    CHUBARIKOV, VN
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (05): : 1017 - 1019
  • [6] Inequalities for trigonometric sums
    Alzer, Horst
    Kwong, Man Kam
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1801 - 1817
  • [7] On zeros of trigonometric sums
    Karatsuba, AA
    DOKLADY MATHEMATICS, 2002, 66 (03) : 309 - 310
  • [8] A remark on trigonometric sums
    Katai, I.
    ACTA MATHEMATICA HUNGARICA, 2006, 112 (03) : 221 - 225
  • [9] Arithmetic Trigonometric Sums
    Ionascu, Eugen J.
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (08): : 756 - 756
  • [10] A remark on trigonometric sums
    Imre Kátai
    Acta Mathematica Hungarica, 2006, 112 : 221 - 225