G-Frame Representation and Invertibility of G-Bessel Multipliers

被引:0
|
作者
AABDOLLAHI [1 ]
ERAHIMI [2 ]
机构
[1] Department of Mathematics, College of Sciences, Shiraz University
[2] Department of Mathematics, Shiraz Branch, Islamic Azad
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper we show that every g-frame for an infinite dimensional Hilbert space H can be written as a sum of three g-orthonormal bases for H. Also, we prove that every g-frame can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. Further, we show each g-Bessel multiplier is a Bessel multiplier and investigate the inversion of g-frame multipliers. Finally, we introduce the concept of controlled g-frames and weighted g-frames and show that the sequence induced by each controlled g-frame (resp., weighted g-frame) is a controlled frame (resp., weighted frame).
引用
收藏
页码:392 / 402
页数:11
相关论文
共 50 条
  • [1] G-Frame Representation and Invertibility of G-Bessel Multipliers
    A.ABDOLLAHI
    E.RAHIMI
    Journal of Mathematical Research with Applications, 2013, (04) : 392 - 402
  • [2] Invertibility of g-frame multipliers and Bessel multipliers for unitary systems in Hilbert C*-modules
    Xiang, Zhong-Qi
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (08): : 1663 - 1681
  • [3] Invertibility of generalized g-frame multipliers in Hilbert spaces
    Moosavianfard, Z.
    Abolghasemi, M.
    Tolooei, Y.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1590 - 1609
  • [4] g-Bessel Sequences and Operators
    Khosravi, Amir
    Takhteh, Farkhondeh
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2016, 7 (02): : 139 - 149
  • [5] g-Riesz dual sequences for g-Bessel sequences
    Osgooei, E.
    Najati, A.
    Faroughi, M. H.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [6] Ultra g-Bessel Sequences in Hilbert Spaces
    Abdollahpour, Mohammad Reza
    Najati, Abbas
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (01): : 87 - 94
  • [7] SOME INEQUALITIES AND EQUATIONS OF g-FRAME OPERATOR MULTIPLIERS FOR FINITE GROUP REPRESENTATIONS
    He, Miao
    Wu, Changtian
    Leng, Jinsong
    Xu, Yuxiang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 991 - 1007
  • [8] Stability of g-Frame Expansions
    Abdollahi, A.
    Rahimi, E.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (01): : 57 - 67
  • [9] Eigenvalues and eigenvectors for a G-frame operator
    Yousefzadeheyni, Azam
    Abdollahpour, Mohammad Reza
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (04): : 1295 - 1302
  • [10] Approximation of the inverse G-frame operator
    M R ABDOLLAHPOUR
    A NAJATI
    Proceedings - Mathematical Sciences, 2011, 121 : 143 - 154