Statistical Estimation of the Shannon Entropy

被引:3
作者
Alexander BULINSKI [1 ]
Denis DIMITROV [2 ]
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences
[2] Department of Mathematics and Mechanics,Lomonosov Moscow State University
关键词
D O I
暂无
中图分类号
O414.11 [基本定律];
学科分类号
080701 ;
摘要
The behavior of the Kozachenko–Leonenko estimates for the(differential) Shannon entropy is studied when the number of i.i.d. vector-valued observations tends to infinity. The asymptotic unbiasedness and L2-consistency of the estimates are established. The conditions employed involve the analogues of the Hardy–Littlewood maximal function. It is shown that the results are valid in particular for the entropy estimation of any nondegenerate Gaussian vector.
引用
收藏
页码:17 / 46
页数:30
相关论文
共 9 条
[1]  
On Clausius; Boltzmann and Shannon Notions of Entropy[J] Francisco Balibrea Journal of Modern Physics 2016, 02
[2]   Ensemble Estimators for Multivariate Entropy Estimation [J].
Sricharan, Kumar ;
Wei, Dennis ;
Hero, Alfred O., III .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) :4374-4388
[3]  
The different paths to entropy[J] L Benguigui European Journal of Physics 2013, 2
[4]   Mutual Information Is Copula Entropy [J].
马健 ;
孙增圻 .
Tsinghua Science and Technology, 2011, 16 (01) :51-54
[5]  
Entropy: The Markov Ordering Approach[J] Alexander N. Gorban;Pavel A. Gorban;George Judge Entropy 2010,
[6]  
A computationally efficient estimator for mutual information[J] Evans Dafydd Proceedings of The Royal Society A 2008, 2093
[7]  
Asymptotic moments of near–neighbour distance distributions[J] Evans Dafydd;Jones Antonia J.;Schmidt Wolfgang M. Proceedings of the Royal Society A: Mathematical; Physical and Engineering Sciences 2002, 2028
[8]  
Efficient Estimation of Integral Functionals of a Density[J] Beatrice Laurent The Annals of Statistics 1996, 2
[9]  
On the Kozachenko–Leonenko entropy estimator Delattre; S;Fournier; N; Journal of Statistical Planning and Inference 2017,