Cs3Sb2Br9/Sb-C3N4Z型异质结上Sb-N电荷转移桥促进光催化二氧化碳还原(英文)<iclass="icon-zqcb"></i>

被引:0
|
作者
王皓坤 [1 ]
张梦然 [1 ]
苏克 [1 ]
刘兆磊 [1 ]
穆延飞 [2 ]
白福全 [3 ]
张敏 [1 ]
鲁统部 [1 ]
机构
[1] MOE International Joint Laboratory of Materials Microstructure,Institute for New Energy Materials and Low Carbon Technologies,School of Materials Science and Engineering,Tianjin University of Technology
[2] School of Chemistry and Chemical Engineering,Yangzhou University
[3] Institute of Theoretical Chemistry,College of Chemistry,Jilin
关键词
D O I
暂无
中图分类号
O643.36 [催化剂]; O644.1 [光化学]; X701 [废气的处理与利用];
学科分类号
摘要
开发高效的异质结光催化剂,用于二氧化碳还原耦合水氧化反应仍然具有挑战性,其关键在于建立高效的界面电荷传输通道.本文报道了一种基于Sb原子锚定的原位生长Cs3Sb2Br9/Sb-C3N4 Z型异质结的方法.实验和理论计算表明,在C3N4引入Sb锚点,可在Cs3Sb2Br9和C3N4之间形成了Sb-N电荷转移桥,促进了Cs3Sb2Br9/Sb-C3N4的界面电荷传输.此外,它还可以诱导Cs3Sb2Br9和C3N4之间的界面电荷传输路径从Ⅱ型转变为Z型,实现了催化位点从C3N4到Cs3Sb2Br9的转移,从而促进了二氧化碳的活化.Cs3Sb2Br9/Sb-C3N4在模拟太阳光照射(100 mW·cm-2)下,以水为电子源,实现了高效的二氧化碳到一氧化碳的光催化转化,产率为198.4μmol·g-1·h-1,比没有Sb锚点的对照催化剂(Cs3Sb2Br9/gC3N4)和纯C3N4分别高出近3倍和9倍.这项工作为设计高效异质结光催化剂提供了新的替代方案.
引用
收藏
页码:3176 / 3184
页数:9
相关论文
共 34 条
  • [1] Ligand-free CsPbBr3 with calliandra-like nanostructure for efficient artificial photosynthesis
    Yan-Fei Mu
    Hui-Ling Liu
    Meng-Ran Zhang
    Hong-Juan Wang
    Min Zhang
    Tong-Bu Lu
    [J]. Journal of Energy Chemistry, 2023, 77 (02) : 317 - 325
  • [2] Cryo-induced closely bonded heterostructure for effective CO2 conversion: The case of ultrathin BP nanosheets/g-C3N4
    Guli Zhou
    Jinman Yang
    Xingwang Zhu
    Qidi Li
    Qing Yu
    Wiam El-alami
    Chongtai Wang
    Yuanbin She
    Junchao Qian
    Hui Xu
    Huaming Li
    [J]. Journal of Energy Chemistry, 2020, 49 (10) : 89 - 95
  • [3] The construction of Cs3MoxSbyBr9/BiVO4 S-scheme heterojunction photocatalyst for efficient photocatalytic N2 fixation.[J].Zhao Lei Liu;Han Ying Luo;Meng Ran Zhang;Yan Fei Mu;Fu Quan Bai;Min Zhang;Tong Bu Lu.Chemical Engineering Journal.2024,
  • [4] A halide perovskite based ternary heterojunction with multi-shell hollow structure for stable and efficient artificial photosynthesis.[J].You Xiang Feng;Ke Su;Zhao Lei Liu;Su Xian Yuan;Yan Fei Mu;Min Zhang;Tong Bu Lu.Applied Catalysis B: Environment and Energy.2024,
  • [5] Directed Electron Delivery from a Pb-Free Halide Perovskite to a Co(II) Molecular Catalyst Boosts CO2 Photoreduction Coupled with Water Oxidation
    Zhao, Jin-Shuang
    Mu, Yan-Fei
    Wu, Li-Yuan
    Luo, Zhi-Mei
    Velasco, Lucia
    Sauvan, Maxime
    Moonshiram, Dooshaye
    Wang, Jia-Wei
    Zhang, Min
    Lu, Tong-Bu
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (21)
  • [6] Adsorption and activation; active site and reaction pathway of photocatalytic CO2 reduction: A review.[J].Yongxing He;Lin Yin;Niannian Yuan;Gaoke Zhang.Chemical Engineering Journal.2024,
  • [7] Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects.[J].Wang Xuandong;He Jie;Chen Xin;Ma Baojun;Zhu Mingshan.Coordination Chemistry Reviews.2023,
  • [8] Constructing atomic surface concaves on Bi5O7Br nanotube for efficient photocatalytic CO2 reduction.[J].Wang Yang;Wang Kaiwen;Meng Jiazhi;Ban Chaogang;Duan Youyu;Feng Yajie;Jing Shaojie;Ma Jiangping;Yu Danmei;Gan Liyong;Zhou Xiaoyuan.Nano Energy.2023,
  • [9] Metal halide perovskite materials in photocatalysis: Design strategies and applications.[J].Chen Zhen-Yu;Huang Ning-Yu;Xu Qiang.Coordination Chemistry Reviews.2023,
  • [10] Electronic Transmission Channels Promoting Charge Separation of Conjugated Polymers for Photocatalytic CO2 Reduction with Controllable Selectivity
    Chi, Xu
    Lan, Zhi-An
    Chen, Qian
    Zhang, Xirui
    Chen, Xiong
    Zhang, Guigang
    Wang, Xinchen
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (22)