Generalized Drazin spectrum of operator matrices

被引:0
|
作者
ZHANG Shifang [1 ]
ZHONG Huaijie [1 ]
LIN Liqiong [2 ]
机构
[1] School of Mathematics and Computer Science, Fujian Normal University
[2] College of Mathematics and Computer Science, Fuzhou
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let A ∈ B(X) and B ∈ B(Y), MC be an operator on Banach space X ⊕ Y given A C by MC =A generalized Drazin spectrum defined by σgD(T) = {λ∈ C : T-0 BλI is not generalized Drazin invertible} is considered in this paperIt is shown thatσgD(A) ∪σgD(B) = σgD(MC) ∪ WgD(A, B, C),where WgD(A, B, C) is a subset of σgD(A) ∩σgD(B) and a union of certain holes in σgD(MC).Furthermore, several sufficient conditions for σgD(A) ∪σgD(B) = σgD(MC) holds for every C ∈ B(Y, X) are given.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [1] Generalized Drazin spectrum of operator matrices
    Shi-fang Zhang
    Huai-jie Zhong
    Li-qiong Lin
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 162 - 170
  • [2] Generalized Drazin spectrum of operator matrices
    ZHANG Shi-fang
    ZHONG Huai-jie
    LIN Li-qiong
    Applied Mathematics:A Journal of Chinese Universities, 2014, (02) : 162 - 170
  • [3] Generalized Drazin spectrum of operator matrices
    Zhang Shi-fang
    Zhong Huai-jie
    Lin Li-qiong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (02) : 162 - 170
  • [4] Generalized Drazin invertibility of operator matrices
    Cvetkovic, Milos D.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 692 - 703
  • [5] Generalized Drazin Invertibility of Operator Matrices
    Bahloul, Aymen
    Walha, Ines
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (16) : 1836 - 1847
  • [6] The generalized Drazin inverse of operator matrices
    Guo, Li
    Zou, Honglin
    Chen, Jianlong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03): : 1134 - 1149
  • [7] Drazin spectrum of operator matrices on the Banach space
    Zhang, Shifang
    Zhong, Huaijie
    Jiang, Qiaofen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2067 - 2075
  • [8] Some results on the generalized Drazin inverse of operator matrices
    Deng, Chunyuan
    Cvetkovic-Ilic, Dragana S.
    Wei, Yimin
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (04): : 503 - 521
  • [9] Generalized Drazin-Riesz invertibility for operator matrices
    Tajmouati, Abdelaziz
    Karmouni, Mohammed
    Chrifi, Safae Alaoui
    ADVANCES IN OPERATOR THEORY, 2020, 5 (02) : 347 - 358
  • [10] Generalized Drazin-Riesz invertibility for operator matrices
    Abdelaziz Tajmouati
    Mohammed Karmouni
    Safae Alaoui Chrifi
    Advances in Operator Theory, 2020, 5 : 347 - 358