Phase Engineered Composite Phase Change Materials for Thermal Energy Manipulation

被引:8
|
作者
Aftab, Waseem [1 ]
Shi, Jinming [1 ]
Jin, Yongkang [1 ]
Usman, Ali [1 ]
Qin, Mulin [1 ]
Ashraf, Zubair [1 ]
Shen, Zhenghui [1 ]
Zhong, Ruiqin [2 ]
Zou, Ruqiang [1 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
high thermal storage capacity; optimal shape-stability; phase change material; phase engineering; thermal manipulation; STORAGE; OPTIMIZATION; CONVERSION;
D O I
10.1002/smll.202312134
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase change materials (PCMs) present a dual thermal management functionality through intrinsic thermal energy storage (TES) capabilities while maintaining a constant temperature. However, the practical application of PCMs encounters challenges, primarily stemming from their low thermal conductivity and shape-stability issues. Despite significant progress in the development of solid-solid PCMs, which offer superior shape-stability compared to their solid-liquid counterparts, they compromise TES capacity. Herein, a universal phase engineering strategy is introduced to address these challenges. The approach involves compositing solid-liquid PCM with a particulate-based conductive matrix followed by surface reaction to form a solid-solid PCM shell, resulting in a core-shell composite with enhanced thermal conductivity, high thermal storage capacity, and optimal shape-stability. The core-shell structure designed in this manner not only encapsulates the energy-rich solid-liquid PCM core but also significantly enhances TES capacity by up to 52% compared to solid-solid PCM counterparts. The phase-engineered high-performance PCMs exhibit excellent thermal management capabilities by reducing battery cell temperature by 15 degrees C and demonstrating durable solar-thermal-electric power generation under cloudy or no sunshine conditions. This proposed strategy holds promise for extending to other functional PCMs, offering a compelling avenue for the development of high-performance PCMs for thermal energy applications. A surface modification-based phase engineering strategy is devised to achieve two key objectives simultaneously: enhancing the thermal storage capacity and ensuring optimal shape-stability of phase change materials. This approach is designed to enable bifunctional thermal management and durable solar-thermal-electric power generation. image
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Paraffin/Palygorskite composite phase change materials for thermal energy storage
    Yang, Dan
    Shi, Silan
    Xiong, Lian
    Guo, Haijun
    Zhang, Hairong
    Chen, Xuefang
    Wang, Can
    Chen, Xinde
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 228 - 234
  • [2] Influence of advanced composite phase change materials on thermal energy storage and thermal energy conversion
    Junaidi, Md. Abdul Raheem
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,
  • [3] Effect of inclination on the thermal response of composite phase change materials for thermal energy storage
    Yang, Xiaohu
    Guo, Zengxu
    Liu, Yanhua
    Jin, Liwen
    He, Ya-Ling
    APPLIED ENERGY, 2019, 238 : 22 - 33
  • [4] Kaolinite stabilized paraffin composite phase change materials for thermal energy storage
    Li, Chuanchang
    Fu, Liangjie
    Ouyang, Jing
    Tang, Aidong
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2015, 115 : 212 - 220
  • [5] Study on relative thermal conductivity of phase change energy storage composite materials
    Li, Qinghai
    Zhou, Quan
    Guo, Hongbin
    Li, Dongxu
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2014, 17 (06): : 984 - 988
  • [6] Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage
    Li, Wei
    Zhang, Rong
    Jiang, Nan
    Tang, Xiao-fen
    Shi, Hai-feng
    Zhang, Xing-xiang
    Zhang, Yuankai
    Dong, Lin
    Zhang, Ningxin
    ENERGY, 2013, 57 : 607 - 614
  • [7] Phase change materials for thermal energy storage
    Pielichowska, Kinga
    Pielichowski, Krzysztof
    PROGRESS IN MATERIALS SCIENCE, 2014, 65 : 67 - 123
  • [8] Stearic Acid/Copper Foam as Composite Phase Change Materials for Thermal Energy Storage
    Chuanchang Li
    Xinbo Zhao
    Bo Zhang
    Baoshan Xie
    Zhangxing He
    Jian Chen
    Jianjun He
    Journal of Thermal Science, 2020, 29 : 492 - 502
  • [9] Stearic Acid/Copper Foam as Composite Phase Change Materials for Thermal Energy Storage
    LI Chuanchang
    ZHAO Xinbo
    ZHANG Bo
    XIE Baoshan
    HE Zhangxing
    CHEN Jian
    HE Jianjun
    Journal of Thermal Science, 2020, 29 (02) : 492 - 502
  • [10] Emerging mineral-coupled composite phase change materials for thermal energy storage
    Li, Chuanchang
    Xie, Baoshan
    Chen, Jian
    He, Zhangxing
    Chen, Zhongsheng
    Long, Yi
    ENERGY CONVERSION AND MANAGEMENT, 2019, 183 : 633 - 644