Landslide Susceptibility Mapping Considering Landslide Local-Global Features Based on CNN and Transformer

被引:10
|
作者
Zhao, Zeyang [1 ]
Chen, Tao [1 ,2 ,3 ,4 ]
Dou, Jie [2 ]
Liu, Gang [5 ]
Plaza, Antonio [6 ]
机构
[1] China Univ Geosci, Sch Geophys & Geomat, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Badong Natl Observat & Res Stn Geohazards, Wuhan 430074, Peoples R China
[3] Minist Nat Resources, Key Lab Natl Geog Census & Monitoring, Wuhan 430079, Peoples R China
[4] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[5] Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
[6] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10071, Spain
基金
中国国家自然科学基金;
关键词
Terrain factors; Feature extraction; Transformers; Geology; Convolutional neural networks; Task analysis; Surfaces; Convolutional neural network (CNN); landslide local-global features; landslide susceptibility mapping (LSM); transformer; RANDOM FOREST;
D O I
10.1109/JSTARS.2024.3379350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Landslide susceptibility mapping (LSM) is a crucial step in quantitatively assessing landslide risk, essential for geologic hazards prevention. With the rapid development of deep learning models, convolutional neural networks (CNNs), and transformer architectures have been applied to LSM. However, these models still face the challenges of suboptimal mapping accuracy and limited capacity for multilevel landslide features extraction. In this study, we present a CNN-transformer local-global features extraction network (CTLGNet) that combines the strengths of both CNN and transformer models to effectively extract both landslide local and global features. We apply this model to LSM in two regions: the Three Gorges Reservoir area and Jiuzhaigou. To begin, nine landslide conditioning factors are selected and analyzed to construct the landslide dataset for LSM. Subsequently, the dataset is randomly split into training, validation, and test datasets in a 6:2:2 ratio to attain LSM results. Then, CTLGNet is compared to CNN, residual neural network, densely connected convolutional network, vision transformer, and fractional Fourier image transformer using various evaluation metrics. The results demonstrate that CTLGNet exhibits exceptional landslide prediction and generalization capabilities, outperforming the other five models across all evaluation metrics except Recall, with AUC values of 0.9817 and 0.9693 for the two regions, respectively. The LSM results indicate that CTLGNet can effectively extract both landslide local and global features to achieve landslide localization and detail capture. Overall, our proposed framework excels in extracting multilevel landslide features and holds great potential for widespread application.
引用
收藏
页码:7475 / 7489
页数:15
相关论文
共 50 条
  • [1] COMPACT CONVOLUTIONAL TRANSFORMER FOR LANDSLIDE SUSCEPTIBILITY MAPPING
    Zhao, Zeyang
    Chen, Tao
    Li, Jun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2568 - 2571
  • [2] Application of Transformer Models to Landslide Susceptibility Mapping
    Bao, Shuai
    Liu, Jiping
    Wang, Liang
    Zhao, Xizhi
    SENSORS, 2022, 22 (23)
  • [3] Landslide susceptibility mapping based on the reliability of landslide and non-landslide sample
    Hong, Haoyuan
    Wang, Desheng
    Zhu, A-Xing
    Wang, Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 243
  • [4] A Graph-Transformer Method for Landslide Susceptibility Mapping
    Zhang, Qing
    He, Yi
    Zhang, Yalei
    Lu, Jiangang
    Zhang, Lifeng
    Huo, Tianbao
    Tang, Jiapeng
    Fang, Yumin
    Zhang, Yunhao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14556 - 14574
  • [5] A heuristic approach to global landslide susceptibility mapping
    Stanley, Thomas
    Kirschbaum, Dalia B.
    NATURAL HAZARDS, 2017, 87 (01) : 145 - 164
  • [6] A heuristic approach to global landslide susceptibility mapping
    Thomas Stanley
    Dalia B. Kirschbaum
    Natural Hazards, 2017, 87 : 145 - 164
  • [7] Utilizing deep learning approach to develop landslide susceptibility mapping considering landslide types
    Wang, Yue
    Zhou, Chao
    Cao, Ying
    Meena, Sansar Raj
    Feng, Yang
    Wang, Yang
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (11)
  • [8] A comparative study of various combination strategies for landslide susceptibility mapping considering landslide types
    Yu, Lanbing
    Pradhan, Biswajeet
    Wang, Yang
    GEOSCIENCE FRONTIERS, 2025, 16 (02)
  • [9] Landslide susceptibility mapping using CNN models based on factor visualization and transfer learning
    Liu, Chao
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2025, 39 (01) : 231 - 249
  • [10] Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks
    Zhang, Han
    Yin, Chao
    Wang, Shaoping
    Guo, Bing
    NATURAL HAZARDS, 2023, 116 (02) : 1931 - 1971