An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification

被引:1
|
作者
Gonzalez, Rodrigo A. [1 ]
Cedeno, Angel L. [2 ,3 ]
Coronel, Maria [3 ]
Aguero, Juan C. [2 ,3 ]
Rojas, Cristian R. [4 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[2] Univ Tecn Federico Santa Maria, Elect Engn Dept, Valparaiso, Chile
[3] Adv Ctr Elect & Elect Engn AC3E, Valparaiso, Chile
[4] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
瑞典研究理事会;
关键词
System identification; continuous-time systems; event-based sampling; expectation-maximization; MODELS;
D O I
10.1016/j.ifacol.2023.10.1771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.
引用
收藏
页码:4204 / 4209
页数:6
相关论文
共 50 条
  • [1] Real-Time Lebesgue-Sampled Model for Continuous-Time Nonlinear Systems
    Wang, Xiaofeng
    Zhang, Bin
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4367 - 4372
  • [2] Stochastic theory of continuous-time state-space identification
    Johansson, R
    Verhaegen, M
    Chou, CT
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) : 41 - 51
  • [3] Stochastic theory of continuous-time state-space identification
    Johansson, R
    Verhaegen, M
    Chou, CT
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1866 - 1871
  • [4] Identifying Lebesgue-sampled Continuous-time Impulse Response Models: A Kernel-based Approach
    Gonzalez, Rodrigo A.
    Tiels, Koen
    Oomen, Tom
    IFAC PAPERSONLINE, 2023, 56 (02): : 4198 - 4203
  • [5] Adaptive identification of continuous-time MIMO state-space models
    Afri, Chouaib
    Bako, Laurent
    Andrieu, Vincent
    Dufour, Pascal
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 5677 - 5682
  • [6] Identification of continuous-time state-space models from non-uniform fast-sampled data
    Yuz, J. I.
    Alfaro, J.
    Agueero, J. C.
    Goodwin, G. C.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07): : 842 - 855
  • [7] Direct identification of continuous-time linear switched state-space models
    Mejari, Manas
    Piga, Dario
    IFAC PAPERSONLINE, 2023, 56 (02): : 4210 - 4215
  • [8] An integral architecture for identification of continuous-time state-space LPV models
    Mejari, Manas
    Mavkov, Bojan
    Forgione, Marco
    Piga, Dario
    IFAC PAPERSONLINE, 2021, 54 (08): : 7 - 12
  • [9] Multiple-model state-space system identification with time delay using the EM algorithm
    Gu, Ya
    Chen, Lin
    Li, Chuanjiang
    Yin, Shiyi
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (16):
  • [10] Direct identification of continuous-time LPV state-space models via an integral architecture
    Mejari, Manas
    Mavkov, Bojan
    Forgione, Marco
    Piga, Dario
    AUTOMATICA, 2022, 142