A comprehensive data-driven odyssey to explore the equation of state of dark energy

被引:4
|
作者
Dinda, Bikash R. [1 ,2 ]
Banerjee, Narayan [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Nadia 741246, W Bengal, India
[2] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 07期
基金
新加坡国家研究基金会;
关键词
LUMINOUS RED GALAXIES; MODIFIED GRAVITY; GROWTH-RATE; COSMIC CHRONOMETERS; 2DF-SDSS LRG; QSO SURVEY; H(Z); CONSTRAINTS; UNIVERSE; LAMBDA;
D O I
10.1140/epjc/s10052-024-13064-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
For the first time, we reconstruct the dark energy equation of the state parameter w from the combination of background and perturbation observations, specifically combining the Hubble parameter data from cosmic chronometer observations and the logarithmic growth rate data from the growth rate observations. We do this analysis using posterior Gaussian process regression without considering any specific cosmological model or parametrization. However there are three main assumptions: (I) a flat Friedmann-Lema & icirc;tre-Robertson-Walker (FLRW) metric is considered for the cosmological background, (II) there is no interaction between dark energy and matter sectors, and (III) for the growth of inhomogeneity, sub-Hubble approximation and linear perturbations are considered. This study is unique in the sense that the reconstruction of w is independent of any derived parameters such as the present values of the matter-energy density parameter and Hubble parameter. From the reconstruction, we look at how the dark energy equation of state evolves between redshifts 0 and 1.5, finding a slight hint of dynamical behavior in dark energy. However, the evidence is not significant. We also find a leaning towards non-phantom behavior over phantom behavior. We observe that the Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}CDM model (w=-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(w=-1)$$\end{document} nearly touches the lower boundary of the 1 sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} confidence region in the redshift range 0.6 less than or similar to z less than or similar to 0.85.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.6 \lesssim z \lesssim 0.85.$$\end{document} However, it comfortably resides within the 2 sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} confidence region in the whole redshift range under investigation, 0 <= z <= 1.5.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le z \le 1.5.$$\end{document} Consequently, the non-parametric, model-independent reconstruction of dark energy provides no compelling evidence to deviate from the Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}CDM model when considering cosmic chronometer and growth rate observations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Data-Driven Approaches for Energy Theft Detection: A Comprehensive Review
    Kim, Soohyun
    Sun, Youngghyu
    Lee, Seongwoo
    Seon, Joonho
    Hwang, Byungsun
    Kim, Jeongho
    Kim, Jinwook
    Kim, Kyounghun
    Kim, Jinyoung
    ENERGIES, 2024, 17 (12)
  • [2] A Data-driven Riccati Equation
    Rantzer, Anders
    6TH ANNUAL LEARNING FOR DYNAMICS & CONTROL CONFERENCE, 2024, 242 : 504 - 513
  • [3] On the equation of state of dark energy
    Polarski, D
    Ranquet, A
    PHYSICS LETTERS B, 2005, 627 : 1 - 8
  • [4] The dark energy equation of state
    Usmani, A. A.
    Ghosh, P. P.
    Mukhopadhyay, Utpal
    Ray, P. C.
    Ray, Saibal
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 386 (01) : L92 - L95
  • [5] Constraining the dark-energy equation of state with cosmological data
    Teng, Yu-Ping
    Lee, Wolung
    Ng, Kin-Wang
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [6] Evaluating sustainable energy security in China and Kazakhstan: A comprehensive data-driven approach
    Darke, Walker
    Karatayev, Marat
    ENVIRONMENTAL AND SUSTAINABILITY INDICATORS, 2025, 26
  • [7] Revisiting the parametrization of equation of state of dark energy via SNIa data
    Liu, Dao-Jun
    Li, Xin-Zhou
    Hao, Jiangang
    Jin, Xing-Hua
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 388 (01) : 275 - 281
  • [8] Impact of dark energy on the equation of state in light of the latest cosmological data
    Myrzakulov, N.
    Koussour, M.
    Alfedeel, Alnadhief H. A.
    Hassan, E., I
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2023, 2023 (09):
  • [9] Constraints on the dark energy equation of state from recent supernova data
    Dicus, DA
    Repko, WW
    PHYSICAL REVIEW D, 2004, 70 (08):
  • [10] Stress testing the dark energy equation of state imprint on supernova data
    Moews, Ben
    de Souza, Rafael S.
    Ishida, Emille E. O.
    Malz, Alex, I
    Heneka, Caroline
    Vilalta, Ricardo
    Zuntz, Joe
    PHYSICAL REVIEW D, 2019, 99 (12)