Deep Learning for Automatic Strain Quantification in Arrhythmogenic Right Ventricular Cardiomyopathy

被引:0
|
作者
Alvarez-Florez, Laura [1 ,2 ,3 ]
Sander, Jorg [1 ,2 ]
Bourfiss, Mimount [4 ]
Tjong, Fleur V. Y. [3 ,7 ]
Velthuis, Birgitta K. [5 ]
Isgum, Ivana [1 ,2 ,6 ,7 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[2] Univ Amsterdam, Inst Informat, Amsterdam, Netherlands
[3] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Clin & Expt Cardiol, Ctr Heart, Amsterdam, Netherlands
[4] Univ Med Ctr Utrecht, Dept Cardiol, Utrecht, Netherlands
[5] Univ Med Ctr Utrecht, Dept Radiol & Nucl Med, Utrecht, Netherlands
[6] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[7] Amsterdam Cardiovasc Sci, Amsterdam, Netherlands
关键词
Implicit Neural Representations; Image Registration; Strain; Cardiac Motion; Arrhythmogenic Right Ventricular Cardiomyopathy;
D O I
10.1007/978-3-031-52448-6_3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Quantification of cardiac motion with cine Cardiac Magnetic Resonance Imaging (CMRI) is an integral part of arrhythmogenic right ventricular cardiomyopathy (ARVC) diagnosis. Yet, the expert evaluation of motion abnormalities with CMRI is a challenging task. To automatically assess cardiac motion, we register CMRIs from different time points of the cardiac cycle using Implicit Neural Representations (INRs) and perform a biomechanically informed regularization inspired by the myocardial incompressibility assumption. To enhance the registration performance, our method first rectifies the inter-slice misalignment inherent to CMRI by performing a rigid registration guided by the long-axis views, and then increases the through-plane resolution using an unsupervised deep learning super-resolution approach. Finally, we propose to synergically combine information from short-axis and 4-chamber long-axis views, along with an initialization to incorporate information from multiple cardiac time points. Thereafter, to quantify cardiac motion, we calculate global and segmental strain over a cardiac cycle and compute the peak strain. The evaluation of the method is performed on a dataset of cine CMRI scans from 47 ARVC patients and 67 controls. Our results show that inter-slice alignment and generation of super-resolved volumes combined with joint analysis of the two cardiac views, notably improves registration performance. Furthermore, the proposed initialization yields more physiologically plausible registrations. The significant differences in the peak strain, discerned between the ARVC patients and healthy controls suggest that automated motion quantification methods may assist in diagnosis and provide further understanding of disease-specific alterations of cardiac motion.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [1] Looking beyond the right ventricular strain: right atrial strain in arrhythmogenic right ventricular cardiomyopathy
    Ambrozic, Jana
    Cvijic, Marta
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2024, 25 (08) : 1069 - 1070
  • [2] Improved diagnosis of arrhythmogenic right ventricular cardiomyopathy using electrocardiographic deep learning
    Carrick, Richard T.
    Carruth, Eric D.
    Gasperetti, Alessio
    Murray, Brittney
    Tichnell, Crystal
    Gaine, Sean
    Sampognaro, James
    Muller, Steven A.
    Asatryan, Babken
    Haggerty, Chris
    Thiemann, David
    Calkins, Hugh
    James, Cynthia A.
    Wu, Katherine C.
    HEART RHYTHM, 2025, 22 (04) : 1080 - 1088
  • [3] Right atrial strain and cardiovascular outcome in arrhythmogenic right ventricular cardiomyopathy
    Anwer, Shehab
    Guastafierro, Francesca
    Erhart, Ladina
    Costa, Sarah
    Akdis, Deniz
    Schuermann, Manuel
    Hosseini, Sara
    Winkler, Neria E.
    Kuzo, Nazar
    Gasperetti, Alessio
    Brunckhorst, Corinna
    Duru, Firat
    Saguner, Ardan M.
    Tanner, Felix C.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2022, 23 (07) : 970 - 978
  • [4] Incremental Diagnostic Value of Right Ventricular Strain Analysis in Arrhythmogenic Right Ventricular Cardiomyopathy
    Dong, Zhixiang
    Ma, Xuan
    Wang, Jiaxin
    Yang, Shujuan
    Yu, Shiqin
    Song, Yanyan
    Tang, Yun
    Xiang, Xiaorui
    Yang, Kai
    Zhao, Kankan
    Lu, Minjie
    Chen, Xiuyu
    Zhao, Shihua
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (01):
  • [5] Right Ventricular Function in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Value of Strain Echocardiography
    Bjerregaard, Caroline Lokke
    Biering-Sorensen, Tor
    Skaarup, Kristoffer Grundtvig
    Sengelov, Morten
    Lassen, Mats Christian Hojbjerg
    Johansen, Niklas Dyrby
    Olsen, Flemming Javier
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (03)
  • [6] Arrhythmogenic Right Ventricular Cardiomyopathy
    Fontaine, Guy
    ISRAEL MEDICAL ASSOCIATION JOURNAL, 2014, 16 (06): : 375 - 376
  • [7] Arrhythmogenic right ventricular cardiomyopathy
    Maria Lopez-Ayala, Jose
    Jose Oliva-Sandoval, Maria
    Jose Sanchez-Munoz, Juan
    Ramon Gimeno, Juan
    LANCET, 2015, 385 (9968): : 662 - 662
  • [8] Arrhythmogenic Right Ventricular Cardiomyopathy
    Dolkar, Tsering
    Nway, Nway
    Hamad, Abubaker M.
    Jain, Hardik
    Dufresne, Alix
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (11)
  • [9] Arrhythmogenic Right Ventricular Cardiomyopathy
    Corrado, Domenico
    Link, Mark S.
    Calkins, Hugh
    NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (01): : 61 - 72
  • [10] Arrhythmogenic Right Ventricular Cardiomyopathy
    Krahn, Andrew D.
    Wilde, Arthur A. M.
    Calkins, Hugh
    La Gerche, Andre
    Cadrin-Tourigny, Julia
    Roberts, Jason D.
    Han, Hui-Chen
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2022, 8 (04) : 533 - 553