CMDA: Cross-Modality Domain Adaptation for Nighttime Semantic Segmentation

被引:13
|
作者
Xia, Ruihao [1 ]
Zhao, Chaoqiang [1 ]
Zheng, Meng [2 ]
Wu, Ziyan [2 ]
Sun, Qiyu [1 ]
Tang, Yang [1 ]
机构
[1] East China Univ Sci & Technol, Shanghai, Peoples R China
[2] United Imaging Intelligence, Cambridge, MA USA
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV51070.2023.01972
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most nighttime semantic segmentation studies are based on domain adaptation approaches and image input. However, limited by the low dynamic range of conventional cameras, images fail to capture structural details and boundary information in low-light conditions. Event cameras, as a new form of vision sensors, are complementary to conventional cameras with their high dynamic range. To this end, we propose a novel unsupervised Cross-Modality Domain Adaptation (CMDA) framework to leverage multi-modality (Images and Events) information for nighttime semantic segmentation, with only labels on daytime images. In CMDA, we design the Image Motion-Extractor to extract motion information and the Image Content-Extractor to extract content information from images, in order to bridge the gap between different modalities (Images. Events) and domains (Day. Night). Besides, we introduce the first image-event nighttime semantic segmentation dataset. Extensive experiments on both the public image dataset and the proposed image-event dataset demonstrate the effectiveness of our proposed approach. We open-source our code, models, and dataset at https://github.com/XiaRho/CMDA.
引用
收藏
页码:21515 / 21524
页数:10
相关论文
共 50 条
  • [1] Semantic Consistent Unsupervised Domain Adaptation for Cross-Modality Medical Image Segmentation
    Zeng, Guodong
    Lerch, Till D.
    Schmaranzer, Florian
    Zheng, Guoyan
    Burger, Juergen
    Gerber, Kate
    Tannast, Moritz
    Siebenrock, Klaus
    Gerber, Nicolas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 201 - 210
  • [2] Unsupervised Domain Adaptation for Cross-Modality Cerebrovascular Segmentation
    Wang, Yinuo
    Meng, Cai
    Tang, Zhouping
    Bai, Xiangzhuo
    Ji, Ping
    Bai, Xiangzhi
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (04) : 2871 - 2884
  • [3] AdaptDiff: Cross-Modality Domain Adaptation via Weak Conditional Semantic Diffusion for Retinal Vessel Segmentation
    Hu, Dewei
    Li, Hao
    Liu, Han
    Wang, Jiacheng
    Yao, Xing
    Lu, Daiwei
    Oguz, Ipek
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2024, 2025, 15187 : 13 - 23
  • [4] Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation
    Ouyang, Cheng
    Kamnitsas, Konstantinos
    Biffi, Carlo
    Duan, Jinming
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 669 - 677
  • [5] Structure-Driven Unsupervised Domain Adaptation for Cross-Modality Cardiac Segmentation
    Cui, Zhiming
    Li, Changjian
    Du, Zhixu
    Chen, Nenglun
    Wei, Guodong
    Chen, Runnan
    Yang, Lei
    Shen, Dinggang
    Wang, Wenping
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) : 3604 - 3616
  • [6] Synergistic Image and Feature Adaptation: Towards Cross-Modality Domain Adaptation for Medical Image Segmentation
    Chen, Cheng
    Dou, Qi
    Chen, Hao
    Qin, Jing
    Heng, Pheng-Ann
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 865 - 872
  • [7] Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
    Gao, Huan
    Guo, Jichang
    Wang, Guoli
    Zhang, Qian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9903 - 9913
  • [8] Reducing Domain Gap in Frequency and Spatial Domain for Cross-Modality Domain Adaptation on Medical Image Segmentation
    Liu, Shaolei
    Yin, Siqi
    Qu, Linhao
    Wang, Manning
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 1719 - 1727
  • [9] Mx2M: Masked Cross-Modality Modeling in Domain Adaptation for 3D Semantic Segmentation
    Zhang, Boxiang
    Wang, Zunran
    Ling, Yonggen
    Guan, Yuanyuan
    Zhang, Shenghao
    Li, Wenhui
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 3401 - 3409
  • [10] RGB-D Domain adaptive semantic segmentation with cross-modality feature recalibration
    Fan, Qizhe
    Shen, Xiaoqin
    Ying, Shihui
    Wang, Juan
    Du, Shaoyi
    INFORMATION FUSION, 2025, 120