CT quantification of COVID-19 pneumonia extent to predict individualized outcome

被引:1
|
作者
Berecova, Zuzana [1 ,2 ,11 ]
Juskanic, Dominik [3 ,8 ]
Hazlinger, Martin [1 ,2 ]
Uhnak, Marek [3 ]
Janega, Pavol [6 ]
Rudnay, Maros [4 ,5 ,7 ]
Hatala, Robert [9 ,10 ]
机构
[1] St Michal Hosp, Univ Hosp, Radiodiagnost Clin, Bratislava, Slovakia
[2] Slovak Med Univ, Fac Med, Bratislava, Slovakia
[3] JESSENIUS Diagnost Ctr, Nitra, Slovakia
[4] Comenius Univ, Fac Med, Dept Radiol 2, Bratislava, Slovakia
[5] St Elizabeth Canc Inst, Bratislava, Slovakia
[6] Comenius Univ, Inst Pathol Anat, Fac Med, Bratislava, Slovakia
[7] Slovak Acad Sci, Ctr Expt Med, Bratislava, Slovakia
[8] Univ Hosp L Pasteur, Dept Radiodiagnost & Imaging Tech, Kosice, Slovakia
[9] Natl Inst Cardiovasc Dis, Dept Cardiol & Angiol, Bratislava, Slovakia
[10] Slovak Med Univ, Bratislava, Slovakia
[11] St Michal Hosp, Univ Hosp, Radiodiagnost Clin, Satinskeho 1, SK-81108 Bratislava, Slovakia
关键词
COVID-19; pneumonia; computed tomography; artificial intelligence; ground glass opacity;
D O I
10.4149/BLL_2024_25
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVES: This study aimed to predict individual COVID-19 patient prognosis at hospital admission using artificial intelligence (AI)-based quantification of computed tomography (CT) pulmonary involvement. BACKGROUND: Assessing patient prognosis in COVID-19 pneumonia is crucial for patient management and METHODS: We retrospectively analyzed 559 patients with PCR-verified COVID-19 pneumonia referred to the hospital for a severe disease course. We correlated the CT extent of pulmonary involvement with patient outcome. We also attempted to define cut-off values of pulmonary involvement for predicting different outcomes. RESULTS: CT-based disease extent quantification is an independent predictor of patient morbidity and mortality, with the prognosis being impacted also by age and cardiovascular comorbidities. With the use of explored cut-off values, we divided patients into three groups based on their extent of disease: (1) less than 28 % (sensitivity 65.4 %; specificity 89.1 %), (2) ranging from 28 % (31 %) to 47 % (sensitivity 87.1 %; specificity 62.7 %), and (3) above 47 % (sensitivity 87.1 %; specificity, 62.7 %), representing low risk, risk for oxygen therapy and invasive pulmonary ventilation, and risk of death, respectively. CONCLUSION: CT quantification of pulmonary involvement using AI-based software helps predict COVID-19 patient outcomes (Tab. 4, Fig. 4, Ref. 38). Text in PDF www.elis.sk
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
  • [1] A Pattern Categorization of CT Findings to Predict Outcome of COVID-19 Pneumonia
    Jin, Chao
    Tian, Cong
    Wang, Yan
    Wu, Carol C.
    Zhao, Huifang
    Liang, Ting
    Liu, Zhe
    Jian, Zhijie
    Li, Runqing
    Wang, Zekun
    Li, Fen
    Zhou, Jie
    Cai, Shubo
    Liu, Yang
    Li, Hao
    Li, Zhongyi
    Liang, Yukun
    Zhou, Heping
    Wang, Xibin
    Ren, Zhuanqin
    Yang, Jian
    FRONTIERS IN PUBLIC HEALTH, 2020, 8
  • [2] Determining extent of COVID-19 pneumonia on CT based on biological variables
    Tordjman, Mickael
    Mekki, Ahmed
    Mali, Rahul D.
    Monnier, Hippolyte
    Neveu, Sophie
    Chassagnon, Guillaume
    Mihoubi, Fadila
    Carlier, Nicolas
    Marey, Jonathan
    Fournier, Laure
    Carlier, Robert-Yves
    Drape, Jean-Luc
    Revel, Marie-Pierre
    RESPIRATORY MEDICINE, 2020, 175
  • [3] An individualized algorithm to predict mortality in COVID-19 pneumonia: a machine learning based study
    Laino, Maria Elena
    Generali, Elena
    Tommasini, Tobia
    Angelotti, Giovanni
    Aghemo, Alessio
    Desai, Antonio
    Morandini, Pierandrea
    Stefanini, Giulio
    Lleo, Ana
    Voza, Antonio
    Savevski, Victor
    ARCHIVES OF MEDICAL SCIENCE, 2022, 18 (03) : 587 - 595
  • [4] Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia
    Colombi, Davide
    Bodini, Flavio C.
    Petrini, Marcello
    Maffi, Gabriele
    Morelli, Nicola
    Milanese, Gianluca
    Silva, Mario
    Sverzellati, Nicola
    Michieletti, Emanuele
    RADIOLOGY, 2020, 296 (02) : E86 - E96
  • [5] AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
    Chassagnon, Guillaume
    Vakalopoulou, Maria
    Battistella, Enzo
    Christodoulidis, Stergios
    Trieu-Nghi Hoang-Thi
    Dangeard, Severine
    Deutsch, Eric
    Andre, Fabrice
    Guillo, Enora
    Halm, Nara
    El Hajj, Stefany
    Bompard, Florian
    Neveu, Sophie
    Hani, Chahinez
    Saab, Ines
    Campredon, Alienor
    Koulakian, Hasmik
    Bennani, Souhail
    Freche, Gael
    Barat, Maxime
    Lombard, Aurelien
    Fournier, Laure
    Monnier, Hippolyte
    Grand, Teodor
    Gregory, Jules
    Nguyen, Yann
    Khalil, Antoine
    Mahdjoub, Elyas
    Brillet, Pierre-Yves
    Ba, Stephane Tran
    Bousson, Valerie
    Mekki, Ahmed
    Carlier, Robert-Yves
    Revel, Marie-Pierre
    Paragios, Nikos
    MEDICAL IMAGE ANALYSIS, 2021, 67
  • [6] CT Quantification of COVID-19 Pneumonia at Admission Can Predict Progression to Critical Illness: A Retrospective Multicenter Cohort Study
    Pang, Baoguo
    Li, Haijun
    Liu, Qin
    Wu, Penghui
    Xia, Tingting
    Zhang, Xiaoxian
    Le, Wenjun
    Li, Jianyu
    Lai, Lihua
    Ou, Changxing
    Ma, Jianjuan
    Liu, Shuai
    Zhou, Fuling
    Wang, Xinlu
    Xie, Jiaxing
    Zhang, Qingling
    Jiang, Min
    Liu, Yumei
    Zeng, Qingsi
    FRONTIERS IN MEDICINE, 2021, 8
  • [7] CT characteristics and laboratory findings of COVID-19 pneumonia in relation to patient outcome
    Ibrahim A. I. Mohamed
    Hosam A. Hasan
    Mohamed Abdel-Tawab
    Egyptian Journal of Radiology and Nuclear Medicine, 52
  • [8] CT characteristics and laboratory findings of COVID-19 pneumonia in relation to patient outcome
    Mohamed, Ibrahim A. I.
    Hasan, Hosam A.
    Abdel-Tawab, Mohamed
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):
  • [9] Chest CT Scan Features to Predict COVID-19 Patients' Outcome and Survival
    Mehrabi Nejad, Mohammad-Mehdi
    Abkhoo, Aminreza
    Salahshour, Faeze
    Salehi, Mohammadreza
    Gity, Masoumeh
    Komaki, Hamidreza
    Kolahi, Shahriar
    RADIOLOGY RESEARCH AND PRACTICE, 2022, 2022
  • [10] PET/CT of COVID-19 as an Organizing Pneumonia
    Alonso Sanchez, Jaime
    Garcia Prieto, Julia
    Galiana Moron, Alvaro
    Pilkington-Woll, John Patrick
    CLINICAL NUCLEAR MEDICINE, 2020, 45 (08) : 642 - 643