Porosity Prediction Based on Ensemble Learning for Feature Selection and an Optimized GRU Improved by the PSO Algorithm

被引:0
|
作者
Liu, Miaomiao [1 ,2 ]
Xu, Haoran [1 ]
Zhao, Fengda [3 ]
Zhang, Qiang [1 ,2 ]
Jia, Ying [4 ]
Xi, Jiahao [1 ]
机构
[1] Northeast Petr Univ, Sch Comp & Informat Technol, Daqing 163318, Peoples R China
[2] Key Lab Petr Big Data & Intelligent Anal Heilongji, Daqing 163318, Peoples R China
[3] Yanshan Univ, Coll Informat Sci & Engn, Qinhuangdao 066000, Peoples R China
[4] Northeast Petr Univ, Sch Elect & Informat Engn, Daqing 163318, Peoples R China
关键词
GRU; Ensemble learning; PSO; Porosity prediction; Good-point set; Committee voting;
D O I
10.1007/s44196-024-00600-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate and reliable prediction of porosity forms the foundational basis for evaluating reservoir quality, which is essential for the systematic deployment of oil and gas exploration and development plans. When data quality of samples is low, and critical model parameters are typically determined through subjective experience, resulting in diminished accuracy and reliability of porosity prediction methods utilizing gated recurrent units (GRU), a committee-voting ensemble learning (EL) method, and an enhanced particle swarm optimization (PSO) algorithm are proposed to optimize the GRU-based porosity prediction model. Initially, outliers are eliminated through box plots and the min-max normalization is applied to enhance data quality. To address issues related to model accuracy and high training costs arising from dimensional complexity, substantial noise, and redundant information in logging data, a committee-voting EL strategy based on four feature selection algorithms is introduced. Following data preprocessing, this approach is employed to identify logging parameters highly correlated with porosity, thereby furnishing the most pertinent data samples for the GRU model, mitigating constraints imposed by single-feature selection methods. Second, an improved PSO algorithm is suggested to tackle challenges associated with low convergence accuracy stemming from random population initialization, alongside the absence of global optimal solutions due to overly rapid particle movement during iteration. This algorithm uses a good-point set for population initialization and incorporates a compression factor to devise an adaptive velocity updating strategy, thereby enhancing search efficacy. The enhanced PSO algorithm's superiority is substantiated through comparison with four alternative swarm intelligent algorithms across 10 benchmark test functions. Ultimately, optimal hyper-parameters for the GRU model are determined using the improved PSO algorithm, thereby minimizing the influence of human factors. Experimental findings based on approximately 15,000 logging data points from well A01 in an operational field validate that, relative to three other deep learning methodologies, the proposed model proficiently extracts spatiotemporal features from logging data, yielding enhanced accuracy in porosity prediction. The mean squared error on the test set was 7.19 x 10-6, the mean absolute error stood at 0.0082, and coefficient of determination reached 0.99, offering novel insights for predicting reservoir porosity.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] PSO Based Optimized Ensemble Learning and Feature Selection Approach for Efficient Energy Forecast
    Shafqat, Wafa
    Malik, Sehrish
    Lee, Kyu-Tae
    Kim, Do-Hyeun
    ELECTRONICS, 2021, 10 (18)
  • [2] Financial distress prediction based on ensemble feature selection and improved stacking algorithm
    Wu, Chong
    Chen, Xiaofang
    Jiang, Yongjie
    KYBERNETES, 2024,
  • [3] GRU-corr Neural Network Optimized by Improved PSO Algorithm for Time Series Prediction
    Ji, Shao-Pei
    Meng, Yu-Long
    Yan, Liang
    Dong, Gui-Shan
    Liu, Dong
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (7-8) : 7 - 8
  • [4] Improved Ensemble Feature Selection Based on DT for KPI Prediction
    Gao, Fulin
    Tan, Shuai
    Shi, Hongbo
    Tao, Yang
    Song, Bing
    IEEE ACCESS, 2021, 9 : 136861 - 136871
  • [5] Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection
    Anaram Yaghoobi Notash
    Aidin Yaghoobi Notash
    Zahra Omidi
    Shahpar Haghighat
    BMC Medical Informatics and Decision Making, 22
  • [6] Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection
    Yaghoobi Notash, Anaram
    Yaghoobi Notash, Aidin
    Omidi, Zahra
    Haghighat, Shahpar
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [7] Improved PSO-Based Feature Construction Algorithm Using Feature Selection Methods
    Mahanipour, Afsaneh
    Nezamabadi-pour, Hossein
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 1 - 5
  • [8] Biogas Production Prediction Based on Feature Selection and Ensemble Learning
    Peng, Shurong
    Guo, Lijuan
    Li, Yuanshu
    Huang, Haoyu
    Peng, Jiayi
    Liu, Xiaoxu
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [9] PEМFC Aging Prediction Based on Improved Whale Optimization Algorithm Optimized GRU
    Li, Hao
    Li, Hao
    Yang, Yang
    Zhu, Wenchao
    Xie, Changjun
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (20): : 8166 - 8177
  • [10] An improved PIO feature selection algorithm for IoT network intrusion detection system based on ensemble learning
    Abu Alghanam, Orieb
    Almobaideen, Wesam
    Saadeh, Maha
    Adwan, Omar
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213