Long Time Dynamics of Quasi-linear Hamiltonian Klein-Gordon Equations on the Circle

被引:0
|
作者
Feola, Roberto [1 ]
Giuliani, Filippo [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00144 Rome, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
Long time dynamics; Normal forms; Quasilinear Klein-Gordon; Long time approximation; NONLINEAR-WAVE EQUATIONS; SMALL CAUCHY DATA; LOCAL WELL-POSEDNESS; PERIODIC-SOLUTIONS; SCHRODINGER-EQUATION; SOBOLEV STABILITY; GLOBAL EXISTENCE; LIFE-SPAN; KAM; NLS;
D O I
10.1007/s10884-024-10365-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of Hamiltonian Klein-Gordon equations with a quasilinear, quadratic nonlinearity under periodic boundary conditions. For a large set of masses, we provide a precise description of the dynamics for an open set of small initial data of size epsilon showing that the corresponding solutions remain close to oscillatory motions over a time scale epsilon (-9/4 + delta )for any delta > 0 . The key ingredients of the proof are normal form methods, para-differential calculus and a modified energy approach.
引用
收藏
页数:73
相关论文
共 50 条