Class similarity weighted knowledge distillation for few shot incremental learning

被引:2
|
作者
Akmel, Feidu [1 ]
Meng, Fanman [1 ]
Wu, Qingbo [1 ]
Chen, Shuai [1 ]
Zhang, Runtong [1 ]
Assefa, Maregu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu, Peoples R China
关键词
Knowledge distillation; Semantic information; Few shot; Incremental learning;
D O I
10.1016/j.neucom.2024.127587
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few -shot class incremental learning illustrates the challenges of learning new concepts, where the learner can access only a small sample per concept. The standard incremental learning techniques cannot be applied directly because of the small number of samples for training. Moreover, catastrophic forgetting is the propensity of an Artificial Neural Network to fully and abruptly forget previously learned knowledge upon learning new knowledge. This problem happens due to a lack of supervision in older classes or an imbalance between the old and new classes. In this work, we propose a new distillation structure to tackle the forgetting and overfitting issues. Particularly, we suggest a dual distillation module that adaptably draws knowledge from two different but complementary teachers. The first teacher is the base model, which has been trained on large class data, and the second teacher is the updated model from the previous K-1 session, which contains the modified knowledge of previously observed new classes. Thus, the first teacher can reduce overfitting issues by transferring the knowledge obtained from the base classes to the new classes. While the second teacher can reduce knowledge forgetting by distilling knowledge from the previous model. Additionally, we use semantic information as word embedding to facilitate the distillation process. To align visual and semantic vectors, we used the attention mechanism of the embedding of visual data. With extensive experiments on different data sets such as Mini-ImageNet, CIFAR100, and CUB200, our model shows state-of-the-art performance compared to the existing few shot incremental learning methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Few-shot class incremental learning via prompt transfer and knowledge distillation
    Akmel, Feidu
    Meng, Fanman
    Liu, Mingyu
    Zhang, Runtong
    Teka, Asebe
    Lemuye, Elias
    IMAGE AND VISION COMPUTING, 2024, 151
  • [2] Few-Shot Class-Incremental Learning via Relation Knowledge Distillation
    Dong, Songlin
    Hong, Xiaopeng
    Tao, Xiaoyu
    Chang, Xinyuan
    Wei, Xing
    Gong, Yihong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1255 - 1263
  • [3] Semantic-aware Knowledge Distillation for Few-Shot Class-Incremental Learning
    Cheraghian, Ali
    Rahman, Shafin
    Fang, Pengfei
    Roy, Soumava Kumar
    Petersson, Lars
    Harandi, Mehrtash
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2534 - 2543
  • [4] Uncertainty-Guided Semi-Supervised Few-Shot Class-Incremental Learning With Knowledge Distillation
    Cui, Yawen
    Deng, Wanxia
    Xu, Xin
    Liu, Zhen
    Liu, Zhong
    Pietikainen, Matti
    Liu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6422 - 6435
  • [5] Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation
    Zhao, Linglan
    Lu, Jing
    Xu, Yunlu
    Cheng, Zhanzhan
    Guo, Dashan
    Niu, Yi
    Fang, Xiangzhong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11838 - 11847
  • [6] Variable Few Shot Class Incremental and OpenWorld Learning
    Ahmad, Touqeer
    Dhamija, Akshay Raj
    Jafarzadeh, Mohsen
    Cruz, Steve
    Rabinowitz, Ryan
    Li, Chunchun
    Boult, Terrance E.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3687 - 3698
  • [7] Multi-feature space similarity supplement for few-shot class incremental learning
    Xu, Xinlei
    Niu, Saisai
    Wang, Zhe
    Guo, Wei
    Jing, Lihong
    Yang, Hai
    KNOWLEDGE-BASED SYSTEMS, 2023, 265
  • [8] Knowledge Representation by Generic Models for Few-Shot Class-Incremental Learning
    Chen, Xiaodong
    Jiang, Weijie
    Huang, Zhiyong
    Su, Jiangwen
    Yu, Yuanlong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 1237 - 1247
  • [9] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    Neural Networks, 2024, 169 : 307 - 324
  • [10] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    NEURAL NETWORKS, 2024, 169 : 307 - 324