AN INEXACT RELAXED GENERALIZED NEWTON ITERATIVE METHOD FOR SOLVING GENERALIZED ABSOLUTE VALUE EQUATIONS

被引:0
|
作者
Yu, Dongmei [1 ]
Zhang, Yiming [2 ,3 ]
Yuan, Yifei [4 ]
机构
[1] Liaoning Tech Univ, Coll Sci Inst Optimizat & Decis Analyt, Sch Business Adm, Fuxin 123000, Peoples R China
[2] Liaoning Tech Univ, Sch Business Adm, Huludao 125105, Peoples R China
[3] Liaoning Tech Univ, Inst Optimizat & Decis Analyt, Fuxin 123000, Peoples R China
[4] Liaoning Tech Univ, Inst Optimizat & Decis Anal, Coll Sci, Fuxin 123000, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2024年 / 20卷 / 01期
基金
中国国家自然科学基金;
关键词
generalized absolute value equations; generalized Newton method; relaxed; inexact; convergence; LINEAR COMPLEMENTARITY; VERTICAL-BAR; ALGORITHM; MODEL;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, for solving the generalized absolute value equations (GAVE), an inexact relaxed generalized Newton (IRGN) iterative method is developed, which can adopt a relative error tolerance. Linear convergence of the IRGN iterative method is established under suitable conditions, and theoretical analysis of the inexact schemes support the efficient computational implementations of the exact schemes. It has been found that the IRGN iterative method involves the classical generalized Newton (GN) iterative method as a special case. Some numerical results are given to demonstrate the viability and robustness of the proposed methods.
引用
收藏
页码:23 / 44
页数:22
相关论文
共 50 条
  • [1] A relaxed generalized Newton iteration method for generalized absolute value equations
    Cao, Yang
    Shi, Quan
    Zhu, Sen-Lai
    AIMS MATHEMATICS, 2021, 6 (02): : 1258 - 1275
  • [2] On finite termination of the generalized Newton method for solving absolute value equations
    Jia Tang
    Wenli Zheng
    Cairong Chen
    Dongmei Yu
    Deren Han
    Computational and Applied Mathematics, 2023, 42
  • [3] On finite termination of the generalized Newton method for solving absolute value equations
    Tang, Jia
    Zheng, Wenli
    Chen, Cairong
    Yu, Dongmei
    Han, Deren
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [4] A generalized Newton method for absolute value equations
    O. L. Mangasarian
    Optimization Letters, 2009, 3 : 101 - 108
  • [5] A generalized Newton method for absolute value equations
    Mangasarian, O. L.
    OPTIMIZATION LETTERS, 2009, 3 (01) : 101 - 108
  • [6] Relaxed modified Newton-based iteration method for generalized absolute value equations
    Shao, Xin-Hui
    Zhao, Wan-Chen
    AIMS MATHEMATICS, 2023, 8 (02): : 4714 - 4725
  • [7] An improved generalized Newton method for absolute value equations
    Feng, Jingmei
    Liu, Sanyang
    SPRINGERPLUS, 2016, 5
  • [8] A Modified Generalized Newton Method for Absolute Value Equations
    Li, Cui-Xia
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (03) : 1055 - 1059
  • [9] A perturbed version of an inexact generalized Newton method for solving nonsmooth equations
    Marek J. Śmietański
    Numerical Algorithms, 2013, 63 : 89 - 106
  • [10] A perturbed version of an inexact generalized Newton method for solving nonsmooth equations
    Smietanski, Marek J.
    NUMERICAL ALGORITHMS, 2013, 63 (01) : 89 - 106