Lower bound on the translative covering density of octahedra

被引:0
|
作者
Li, Yiming [1 ]
Lian, Yanlu [2 ]
Fu, Miao [3 ]
Zhang, Yuqin [4 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[3] CSSC Elect Technol Co Ltd, Syst Engn Res Inst, Beijing 100036, Peoples R China
[4] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Translative covering density; octahedron; tile; CAYLEY-GRAPHS; PACKING;
D O I
10.1515/advgeom-2024-0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on Zong's work [26] on translative packing densities of 3-dimensional convex bodies, we present a local method to estimate the density theta t(C-3) of the densest translative covering of an octahedron. As a consequence we prove that theta t(C-3) >= 1 + 6.6 x 10(-8), which is the first non-trivial lower bound for this density.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 50 条
  • [1] Lower Bound on Translative Covering Density of Tetrahedra
    Li, Yiming
    Fu, Miao
    Zhang, Yuqin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (01) : 345 - 356
  • [2] A NEW LOWER BOUND ON TRANSLATIVE COVERING DENSITY OF TETRAHEDRA
    Bezdek, Andras
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (03) : 231 - 236
  • [3] A lower bound for the translative kissing numbers of simplices
    Talata, I
    COMBINATORICA, 2000, 20 (02) : 281 - 293
  • [4] A Lower Bound for the Translative Kissing Numbers of Simplices
    István Talata
    Combinatorica, 2000, 20 : 281 - 293
  • [5] TRANSLATIVE COVERING BY UNIT SQUARES
    Januszewski, Janusz
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 605 - 616
  • [6] TRANSLATIVE COVERING BY HOMOTHETIC COPIES
    BALINT, V
    BALINTOVA, A
    BRANICKA, M
    GRESAK, P
    HRINKO, I
    NOVOTNY, P
    STACHO, M
    GEOMETRIAE DEDICATA, 1993, 46 (02) : 173 - 180
  • [7] Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra
    Gravel, Simon
    Elser, Veit
    Kallus, Yoav
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (04) : 799 - 818
  • [8] Translative covering by sequences of homothetic copies
    Januszewski, J
    ACTA MATHEMATICA HUNGARICA, 2001, 91 (04) : 337 - 342
  • [9] Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra
    Simon Gravel
    Veit Elser
    Yoav Kallus
    Discrete & Computational Geometry, 2011, 46 : 799 - 818
  • [10] Translative Covering by Sequences of Homothetic Copies
    J. Januszewski
    Acta Mathematica Hungarica, 2001, 91 : 337 - 342