Liouville type theorems;
Lichnerowicz equations;
parabolic equations;
elliptic equations;
uniform lower bound of solutions;
sub-elliptic operator;
INEQUALITIES;
D O I:
10.12775/TMNA.2022.076
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we are concerned with the parabolic Lichnerowicz equation involving the Delta(lambda)-Laplacian v(t) - Delta(lambda)v = v(-p-2) - v(P), v > 0; in R-N x R, where p > 0 and Delta(lambda) is a sub-elliptic operator of the form Delta(lambda) = Sigma(N)(i=1) partial derivative x(i) (lambda(2)(i)partial derivative x(i) ). Under some general assumptions of lambda(i) introduced by A.E. Kogoj and E. Lanconelli in Nonlinear Anal. 75 (2012), no. 12, 4637{4649, we shall prove a uniform lower bound of positive solutions of the equation provided that p > 0. Moreover, in the case p > 1, we shall show that the equation has only the trivial solution v = 1. As a consequence, when v is independent of the time variable, we obtain the similar results for the elliptic Lichnerowicz equation involving the Delta(lambda)-Laplacian -Delta(lambda)u = u(-p-2) - u(p), u > 0, in R-N.
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
Yang, Rongrong
Lu, Zhongxue
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
机构:
Yeshiva Univ, Dept Math Sci, New York, NY 10033 USAYeshiva Univ, Dept Math Sci, New York, NY 10033 USA
Li, Yan
Zhuo, Ran
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ, Dept Math Sci, New York, NY 10033 USA
Huanghuai Univ, Dept Math Sci, Zhumadian 463000, Henan, Peoples R ChinaYeshiva Univ, Dept Math Sci, New York, NY 10033 USA
机构:
Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Bairro Bangu, Santo André, 09210-580, SPCentro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Bairro Bangu, Santo André, 09210-580, SP
da Silva M.F.
Freire I.L.
论文数: 0引用数: 0
h-index: 0
机构:
Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Bairro Bangu, Santo André, 09210-580, SPCentro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Bairro Bangu, Santo André, 09210-580, SP
Freire I.L.
Faleiros A.C.
论文数: 0引用数: 0
h-index: 0
机构:
Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Bairro Bangu, Santo André, 09210-580, SPCentro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Bairro Bangu, Santo André, 09210-580, SP
机构:
Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, VietnamTon Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam