Galaxy stellar and total mass estimation using machine learning

被引:4
|
作者
Chu, Jiani [1 ]
Tang, Hongming [1 ]
Xu, Dandan [1 ]
Lu, Shengdong [2 ]
Long, Richard [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Astron, Beijing 100084, Peoples R China
[2] Univ Durham, Inst Computat Cosmol, Dept Phys, South Rd, Durham DH1 3LE, England
[3] Univ Manchester, Jodrell Bank Ctr Astrophys, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, England
基金
中国博士后科学基金;
关键词
methods: data analysis; galaxies: kinematics and dynamics; TO-LIGHT RATIO; SDSS-IV MANGA; INTEGRAL-FIELD SPECTROSCOPY; STAR-FORMING GALAXIES; DARK-MATTER HALOES; ILLUSTRISTNG SIMULATIONS; HYDRODYNAMICAL SIMULATIONS; FUNDAMENTAL PLANE; ELLIPTIC GALAXIES; RADIAL VARIATIONS;
D O I
10.1093/mnras/stae406
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Conventional galaxy mass estimation methods suffer from model assumptions and degeneracies. Machine learning (ML), which reduces the reliance on such assumptions, can be used to determine how well present-day observations can yield predictions for the distributions of stellar and dark matter. In this work, we use a general sample of galaxies from the TNG100 simulation to investigate the ability of multibranch convolutional neural network (CNN) based ML methods to predict the central (i.e. within 1-2 effective radii) stellar and total masses, and the stellar mass-to-light ratio (M-*/L). These models take galaxy images and spatially resolved mean velocity and velocity dispersion maps as inputs. Such CNN-based models can, in general, break the degeneracy between baryonic and dark matter in the sense that the model can make reliable predictions on the individual contributions of each component. For example, with r-band images and two galaxy kinematic maps as inputs, our model predicting M-*/L has a prediction uncertainty of 0.04 dex. Moreover, to investigate which (global) features significantly contribute to the correct predictions of the properties above, we utilize a gradient-boosting machine. We find that galaxy luminosity dominates the prediction of all masses in the central regions, with stellar velocity dispersion coming next. We also investigate the main contributing features when predicting stellar and dark matter mass fractions (f(*), f(DM)) and the dark matter mass M-DM, and discuss the underlying astrophysics.
引用
收藏
页码:6354 / 6369
页数:16
相关论文
共 50 条
  • [1] An application of machine learning techniques to galaxy cluster mass estimation using the MACSIS simulations
    Armitage, Thomas J.
    Kay, Scott T.
    Barnes, David J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) : 1526 - 1537
  • [2] Total and dark mass from observations of galaxy centers with machine learning
    Wu, Sirui
    Napolitano, Nicola R.
    Tortora, Crescenzo
    von Marttens, Rodrigo
    Casarini, Luciano
    Li, Rui
    Lin, Weipeng
    ASTRONOMY & ASTROPHYSICS, 2024, 686
  • [3] Systematic uncertainties in stellar mass estimation for distinct galaxy populations
    Kannappan, Sheila J.
    Gawiser, Eric
    ASTROPHYSICAL JOURNAL, 2007, 657 (01): : L5 - L8
  • [4] The significant effects of stellar mass estimation on galaxy pair fractions
    Grylls, Philip J.
    Shankar, F.
    Conselice, C. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (02) : 2265 - 2275
  • [5] DYNAMICAL MASS MEASUREMENTS OF CONTAMINATED GALAXY CLUSTERS USING MACHINE LEARNING
    Ntampaka, M.
    Trac, H.
    Sutherland, D. J.
    Fromenteau, S.
    Poczos, B.
    Schneider, J.
    ASTROPHYSICAL JOURNAL, 2016, 831 (02):
  • [6] THE INNER DYNAMICAL MASS ACROSS GALAXY MORPHOLOGY: A WEAK SCALING WITH TOTAL STELLAR MASS
    de Naray, Rachel Kuzio
    McGaugh, Stacy S.
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 782 (01)
  • [7] Estimation of stellar mass and star formation rate based on galaxy images
    Zhong, Jing
    Deng, Zhijie
    Li, Xiangru
    Wang, Lili
    Yang, Haifeng
    Li, Hui
    Zhao, Xirong
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (01) : 2011 - 2027
  • [8] A machine learning approach to galaxy properties: joint redshift-stellar mass probability distributions with Random Forest
    Mucesh, S.
    Hartley, W. G.
    Palmese, A.
    Lahav, O.
    Whiteway, L.
    Bluck, A. F. L.
    Alarcon, A.
    Amon, A.
    Bechtol, K.
    Bernstein, G. M.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Choi, A.
    Eckert, K.
    Everett, S.
    Gruen, D.
    Gruendl, R. A.
    Harrison, I
    Huff, E. M.
    Kuropatkin, N.
    Sevilla-Noarbe, I
    Sheldon, E.
    Yanny, B.
    Aguena, M.
    Allam, S.
    Bacon, D.
    Bertin, E.
    Bhargava, S.
    Brooks, D.
    Carretero, J.
    Castander, F. J.
    Conselice, C.
    Costanzi, M.
    Crocce, M.
    da Costa, L. N.
    Pereira, M. E. S.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Drlica-Wagner, A.
    Evrard, A. E.
    Ferrero, I
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Gschwend, J.
    Gutierrez, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 502 (02) : 2770 - 2786
  • [9] The Galaxy Activity, Torus, and Outflow Survey (GATOS) VI. Black hole mass estimation using machine learning
    Poitevineau, R.
    Combes, F.
    Garcia-Burillo, S.
    Cornu, D.
    Herrero, A. Alonso
    Almeida, C. Ramos
    Audibert, A.
    Bellocchi, E.
    Boorman, P. G.
    Bunker, A. J.
    Davies, R.
    Diaz-Santos, T.
    Garcia-Bernete, I.
    Garcia-Lorenzo, B.
    Gonzalez-Martin, O.
    Hicks, E. K. S.
    Hoenig, S. F.
    Hunt, L. K.
    Imanishi, M.
    Pereira-Santaella, M.
    Ricci, C.
    Rigopoulou, D.
    Rosario, D. J.
    Rouan, D.
    Martin, M. Villar
    Ward, M.
    ASTRONOMY & ASTROPHYSICS, 2025, 693
  • [10] RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE
    Reines, Amy E.
    Volonteri, Marta
    ASTROPHYSICAL JOURNAL, 2015, 813 (02):