Optical Soliton solutions for stochastic Davey-Stewartson equation under the effect of noise

被引:2
|
作者
Iqbal, Muhammad Sajid [1 ,2 ]
Inc, Mustafa [3 ]
机构
[1] Liverpool John Moores Univ, Sch Fdn Studies & Math, Oryx Universal Coll, Doha 12253, Qatar
[2] NUST, Mil Coll Signals, Dept Humanities & Basic Sci, Islamabad, Pakistan
[3] Firat Univ, Dept Math, TR-23119 Elazig, Turkiye
关键词
Optical soliton solutions; SDS model; Sardar subequation method; Brownian motion; WAVE SOLUTIONS;
D O I
10.1007/s11082-024-06453-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this manuscript, we investigates the stochastic Davey-Stewartson equation under the influence of noise in It o <^> \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{o}}$$\end{document} sense. This equations is a two-dimensional integrable equations, are higher-dimensional variations of the nonlinear Schr & ouml;dinger equation. Plasma physics, nonlinear optics, hydrodynamics, and other fields have made use of the solutions to the stochastic Davey-Stewartson equations. The Sardar subequation method is used that will gives us the the stochastic optical soliton solutions in the form of dark, bright, combine and periodic waves. These exact optical soliton solutions are helpful in understanding a variety of fascinating physical phenomena because of the importance of the Davey- Stewartson equations in the theory of turbulence for plasma waves or in optical fibers. Additionally, we use Mathematica tools to plot our solutions and exhibit a series of three-dimensional, two-dimensional and their corresponding contour graphs to show how the noise affects the exact solutions of the stochastic Davey-Stewartson equation. We show how the stochastic Davey-Stewartson solutions are stabilised at around zero by the multiplicative Brownian motion.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Generalized Soliton Solutions to Davey-Stewartson Equation
    Behera, S.
    Virdi, J. P. S.
    NONLINEAR OPTICS QUANTUM OPTICS-CONCEPTS IN MODERN OPTICS, 2023, 57 (3-4): : 325 - 337
  • [2] Soliton solutions to the nonlocal Davey-Stewartson III equation
    Fu, Heming
    Ruan, Chenzhen
    Hu, Weiying
    MODERN PHYSICS LETTERS B, 2021, 35 (01):
  • [3] SOLITON SOLUTIONS OF DAVEY-STEWARTSON EQUATION FOR LONG WAVES
    ANKER, D
    FREEMAN, NC
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) : 529 - 540
  • [4] Optical soliton solutions of nonlinear Davey-Stewartson equation using an efficient method
    Gunerhan, H.
    REVISTA MEXICANA DE FISICA, 2021, 67 (06)
  • [5] Periodic soliton resonance: Solutions to the Davey-Stewartson I equation
    Watanabe, Y
    Tajiri, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (03) : 705 - 708
  • [6] Soliton solutions and their (in)stability for the focusing Davey-Stewartson II equation
    Brown, Russell M.
    Perry, Peter A.
    NONLINEARITY, 2018, 31 (09) : 4290 - 4325
  • [7] Dynamics of soliton interaction solutions of the Davey-Stewartson I equation
    Guo, Lijuan
    Chen, Lei
    Mihalache, Dumitru
    He, Jingsong
    PHYSICAL REVIEW E, 2022, 105 (01)
  • [8] Optical soliton wave solutions to the resonant Davey-Stewartson system
    Aghdaei, Mehdi Fazli
    Manafian, Jalil
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (08)
  • [9] Lattice soliton: Solution to the Davey-Stewartson equation
    Takashima, R
    Tajiri, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (07) : 2246 - 2251
  • [10] Homoclinic solutions for Davey-Stewartson equation
    Huang, Jian
    Dai, Zhengde
    CHAOS SOLITONS & FRACTALS, 2008, 35 (05) : 996 - 1002