MOTORS: multi-objective task offloading and resource scheduling algorithm for heterogeneous fog-cloud computing scenario

被引:1
|
作者
Shukla, Prashant [1 ]
Pandey, Sudhakar [1 ]
机构
[1] Natl Inst Technol, Dept Informat Technol, Raipur, Chhattisgarh, India
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 15期
关键词
Fog-cloud computing; Task offloading; Resource scheduling; MOTORS; FDTCO; HORSA; MOBILE; ALLOCATION; SYSTEMS;
D O I
10.1007/s11227-024-06315-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Along with the rising popularity of pay-as-you-go cloud services, many businesses and communities are deploying their business or scientific workflow applications on cloud-based computing platforms. The primary responsibility of cloud service providers is to reduce the monetary cost and execution time of Infrastructure as a Service (IaaS) cloud services. The majority of current solutions for cost and makespan reduction were developed for conventional cloud platforms and are incompatible with heterogeneous computing systems (HCS) having service-based resource management approaches and pricing models. Fog-cloud infrastructures (FCI) have emerged as desirable target areas for workflow automation across several fields of application. In heterogeneous FCI, the execution of workflows involving tasks having different properties might influence the performance in terms of resource usage. The primary goal of this research is to efficiently offload the computational task and optimally schedule the workflow in such diverse computing environment. In this article, we present a novel strategy for building an environment that includes techniques for offloading and scheduling while balancing competing demands from the user and the resource providers. In order to address the issue of uncertainty, our approach incorporates a fuzzy dominance-based task clustering and offloading technique. To construct a suitable execution sequence of tasks that helps to limit the precedence relationship, by preserving dependency constraints among the tasks, a novel algorithm for tasks segmentation is employed. To simplify the problem of the complexity, a hybrid-heuristics based on Harmony Search Algorithm (HSA) and Genetic Algorithm (GA) for resource scheduling algorithm is used. The multi-objective optimization using three competing objectives is taken into consideration for investigation in heterogeneous FCI. The fitness function derived includes minimization of makespan and cost along with maximization of resource utilization. We performed experimental research using five workflow datasets in order to investigate and verify the efficacy of our proposed technique. We contrasted our proposed strategy with the primary, closely comparable strategies. Extensive testing using scientific workflows confirms the effectiveness of our offloading approach. Our solution provided a substantially better cost-makespan tradeoffs, while achieving significantly less energy consumption and can execute marginally quicker than the existing algorithms.
引用
收藏
页码:22315 / 22361
页数:47
相关论文
共 50 条
  • [1] Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog-cloud computing
    Agarwal, Gaurav
    Gupta, Sachi
    Ahuja, Rakesh
    Rai, Atul Kumar
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [2] Multi-objective fuzzy approach to scheduling and offloading workflow tasks in Fog-Cloud computing
    Mokni, Marwa
    Yassa, Sonia
    Hajlaoui, Jalel Eddine
    Omri, Mohamed Nazih
    Chelouah, Rachid
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 123
  • [3] MAA: multi-objective artificial algae algorithm for workflow scheduling in heterogeneous fog-cloud environment
    Shukla, Prashant
    Pandey, Sudhakar
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (10): : 11218 - 11260
  • [4] DE-GWO: A Multi-objective Workflow Scheduling Algorithm for Heterogeneous Fog-Cloud Environment
    Prashant Shukla
    Sudhakar Pandey
    Arabian Journal for Science and Engineering, 2024, 49 : 4419 - 4444
  • [5] DE-GWO: A Multi-objective Workflow Scheduling Algorithm for Heterogeneous Fog-Cloud Environment
    Shukla, Prashant
    Pandey, Sudhakar
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 4419 - 4444
  • [6] MAA: multi-objective artificial algae algorithm for workflow scheduling in heterogeneous fog-cloud environment
    Prashant Shukla
    Sudhakar Pandey
    The Journal of Supercomputing, 2023, 79 : 11218 - 11260
  • [7] Joint Optimization of Computation Offloading and Task Scheduling Using Multi-Objective Arithmetic Optimization Algorithm in Cloud-Fog Computing
    Ali, Asad
    Azim, Nazia
    Othman, Mohamed Tahar Ben
    Rehman, Ateeq Ur
    Alajmi, Masoud
    Al-Adhaileh, Mosleh Hmoud
    Khan, Faheem Ullah
    Orken, Mamyrbayev
    Hamam, Habib
    IEEE Access, 2024, 12 : 184158 - 184178
  • [8] Multi-Objective Grey Wolf Optimizer Algorithm for Task Scheduling in Cloud-Fog Computing
    Saif, Faten A.
    Latip, Rohaya
    Hanapi, Zurina Mohd
    Shafinah, Kamarudin
    IEEE ACCESS, 2023, 11 : 20635 - 20646
  • [9] PGA: A Priority-aware Genetic Algorithm for Task Scheduling in Heterogeneous Fog-Cloud Computing
    Hoseiny, Farooq
    Azizi, Sadoon
    Shojafar, Mohammad
    Ahmadiazar, Fardin
    Tafazolli, Rahim
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [10] Multi-objective task scheduling in cloud computing
    Malti, Arslan Nedhir
    Hakem, Mourad
    Benmammar, Badr
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (25):