Congruence Solvability in Finite Moufang Loops of Order Coprime to Three

被引:0
|
作者
Drapal, Ales [1 ]
Vojtechovsky, Petr [2 ]
机构
[1] Charles Univ Prague, Dept Math, Sokolovska 83, Prague 18675, Czech Republic
[2] Univ Denver, Dept Math, 2390 S York St, Denver, CO 80208 USA
关键词
Congruence solvability; Solvability; Abelian congruence; Abelian extension; moufang loop; 3-divisible Moufang loop;
D O I
10.1007/s00025-024-02231-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a normal subloop X of a Moufang loop Q induces an abelian congruence of Q if and only if u(xy)=(uy)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(xy) = (uy)x$$\end{document} for all x,y is an element of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in X$$\end{document} and u is an element of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in Q$$\end{document}. This characterization is then used to show that classically solvable finite 3-divisible Moufang loops are congruence solvable.
引用
收藏
页数:15
相关论文
共 50 条