The super edge-connectivity of direct product of a graph and a cycle

被引:0
|
作者
Guo, Sijia [1 ]
Hu, Xiaomin [1 ]
Yang, Weihua [1 ]
Zhao, Shuang [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 16期
关键词
Edge-connectivity; Super edge-connectivity; Direct product;
D O I
10.1007/s11227-024-06352-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The super edge-connectivity of a connected graph G, denoted by lambda ' G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }'\left( G \right) $$\end{document}, if exists, is the minimum number of edges whose deletion disconnects the graph such that each component has no isolated vertices. The direct product of graphs G and H, denoted by GxH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\times H$$\end{document}, is the graph with vertex set VGxH=VGxVH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\left( G\times H \right) =V\left( G \right) \times V\left( H \right) $$\end{document}, where two vertices u1,v1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{u}_{1}},{{v}_{1}} \right) $$\end{document} and u2,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{u}_{2}},{{v}_{2}} \right) $$\end{document} are adjacent in GxH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\times H$$\end{document} if and only if u1u2 is an element of EG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{u}_{1}}{{u}_{2}}\in E\left( G \right) $$\end{document} and v1v2 is an element of EH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{v}_{1}}{{v}_{2}}\in E\left( H \right) $$\end{document}. In this paper, it is proved that lambda ' GxCn=min{2n lambda ' G,2minxy is an element of EGdegGx+degGy-2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }'\left( G\times {{C}_{n}} \right) = \min \{ 2n{\lambda }'\left( G \right) ,2\underset{xy\in E\left( G \right) }{{\min }}\,\left( {{\deg }_{G}}\left( x \right) +{{\deg }_{G}}\left( y \right) \right) -2 \}$$\end{document} for (i) any connected graph G with G <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| G \right| \le n$$\end{document} or Delta G <= n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \left( G \right) \le n-1$$\end{document} and an odd cycle Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{C}_{n}}$$\end{document}, or (ii) any split graph G with G <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| G \right| \le n$$\end{document} or Delta G <= n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \left( G \right) \le n-1$$\end{document} and a cycle Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{C}_{n}}$$\end{document}.
引用
收藏
页码:23367 / 23383
页数:17
相关论文
共 50 条
  • [1] On super edge-connectivity of product graphs
    Lue, Min
    Chen, Guo-Liang
    Xu, Xi-Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 900 - 306
  • [2] ON EDGE-CONNECTIVITY AND SUPER EDGE-CONNECTIVITY OF INTERCONNECTION NETWORKS MODELED BY PRODUCT GRAPHS
    Wang, Chunxiang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (02) : 143 - 150
  • [3] Super edge-connectivity of mixed Cayley graph
    Chen, Jinyang
    Meng, Jixiang
    Huang, Lihong
    DISCRETE MATHEMATICS, 2009, 309 (01) : 264 - 270
  • [4] On super edge-connectivity of Cartesian product graphs
    Lu, Min
    Chen, Guo-Liang
    Xu, Jun-Ming
    NETWORKS, 2007, 49 (02) : 152 - 157
  • [5] The edge-connectivity and restricted edge-connectivity of a product of graphs
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2444 - 2455
  • [6] Edge connectivity and super edge-connectivity of jump graphs
    Chen, Xing
    Liu, Juan
    Xie, Dongyang
    Meng, Jixiang
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (02): : 233 - 246
  • [7] On the edge-connectivity of the square of a graph
    Balbuena, Camino
    Dankelmann, Peter
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 250 - 256
  • [8] On the edge-connectivity of the square of a graph
    Balbuena, Camino
    Dankelmann, Peter
    Discrete Applied Mathematics, 366 : 250 - 256
  • [9] Edge-connectivity and super edge-connectivity of P2-path graphs
    Balbuena, C
    Ferrero, D
    DISCRETE MATHEMATICS, 2003, 269 (1-3) : 13 - 20
  • [10] ON THE EDGE-CONNECTIVITY VECTOR OF A GRAPH
    LESNIAK, LM
    PIPPERT, RE
    NETWORKS, 1989, 19 (06) : 667 - 671