This study assesses the impact of raw and alkali-treated Borassus Flabellifer (BF) fibers in an epoxy composite. It examines mechanical properties such as tensile strength, elongation, and impact resistance to gauge load-bearing capacity and resilience to sudden forces in "unmanned aerial vehicle" (UAV) landing gear. Attenuated total reflectance for Fourier transform infrared (ATR-FTIR) were taken to confirm the composition of fiber before and after alkali treatment. Scanning electron microscope (SEM) analysis probes the composite microstructure, shedding light on fiber-matrix interaction and overall morphology. Energy dispersive X-ray analysis (EDX) offers insights into elemental composition, aiding comprehension of element distribution and fiber-epoxy matrix interplay. Thermogravimetric analysis (TGA) showed the thermal stability of the prepared epoxy composites. Water absorption properties are evaluated to gauge resistance to moisture, vital for durability in humid or wet conditions. These findings provide vital data on mechanical properties, SEM microstructure, EDX elemental composition, and water absorption for UAV landing gear applications. The comprehensive investigation of deformation results indicated that Borassus Flabellifer (BF) composite performed exceptionally well for UAV landing gear applications, surpassing banana/epoxy, sisel/epoxy, and coir/epoxy composites. With a landing gear deformation of 1.50 mm under 100 N load, these outcomes underscore the potential for enhancing sustainability in UAV designs. The findings of this study can pave the way for the development of more environmentally friendly and sustainable UAVs to address the critical needs of the rapidly growing UAV industry.