Modelling the nonlinear system performance of hybrid-electric propulsion systems with aerothermodynamic interdependencies

被引:1
|
作者
Goeing, Jan [1 ]
Hanisch, Lucas [2 ]
Luck, Sebastian [1 ]
Henke, Markus [2 ]
Friedrichs, Jens [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Jet Prop & Turbomachinery, Hermann Blenk Str 37, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Elect Machines Tract & Dr, Hans Sommer Str 66, D-38106 Braunschweig, Germany
关键词
dynamic model; reliable performance simulation; hybrid-electric-turbofan engine; non-linear performance simulation;
D O I
10.33737/jgpps/186058
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The development of commercial aircraft with hybrid-electric propulsion systems is currently a subject of extensive research in order to improve local air quality and reduce combustion emissions. Among the various types of engines being studied, the two-spool parallel hybrid-electric turbofan engine is particularly challenging due to the low-pressure compressor (LPC). The hybridisation process tends to throttle the LPC, accentuating its significance in the propulsion system. For reliable operation of such systems, accurate predictions of the LPC performance during time-sensitive manoeuvres such as a go-around are important. These manoeuvres are heavily influenced by time-dependent effects that govern the propulsion system's performance. Often, the aerothermodynamic interplay between these effects is overlooked in propulsion models. In this study, the influence of these aerothermodynamic interdependencies on the modelling results is investigated. To investigate these aerothermodynamic interactions, a dynamic model is developed to simulate the performance of the hybrid-electric turbofan engine. In comparison, a constant mass flow model is used, which is not able to simulate these interdependencies. The results show that the aerothermodynamic interdependencies significantly affect the modelled time-resolved performance, especially for surge margin of the LPC, with this effect becoming more pronounced at higher levels of hybridisation. Therefore, the study recommends the adoption of dynamic simulation methodologies for hybrid-electric engines to guarantee high simulation precision, enhance reliability, and satisfy safety standards.
引用
收藏
页码:98 / 110
页数:13
相关论文
共 50 条
  • [1] Electric/Hybrid-Electric Aircraft Propulsion Systems
    Wheeler, Patrick
    Sirimanna, Thusara Samith
    Bozhko, Serhiy
    Haran, Kiruba S.
    PROCEEDINGS OF THE IEEE, 2021, 109 (06) : 1115 - 1127
  • [2] PERFORMANCE ASSESSMENT OF AN INTEGRATED PARALLEL HYBRID-ELECTRIC PROPULSION SYSTEM AIRCRAFT
    Sahoo, Smruti
    Zhao, Xin
    Kyprianidis, Konstantinos G.
    Kalfas, Anestis
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 3, 2019,
  • [3] Hybrid-Electric Propulsion for Aircraft
    Friedrich, C.
    Robertson, P. A.
    JOURNAL OF AIRCRAFT, 2015, 52 (01): : 176 - 189
  • [4] An Optimisation Tool for Hybrid-Electric Aircraft Propulsion Systems
    Walmsley, Robert
    Ahmed, Rishad
    Klumpner, Christian
    Saleh, Beeond M.
    2023 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE, IEMDC, 2023,
  • [5] System analysis of turbo-electric and hybrid-electric propulsion systems on a regional aircraft
    Gesell, Hendrik
    Wolters, Florian
    Plohr, Martin
    AERONAUTICAL JOURNAL, 2019, 123 (1268): : 1602 - 1617
  • [6] Voltage synchronisation for hybrid-electric aircraft propulsion systems
    Ibrahim, K.
    Sampath, S.
    Nalianda, D.
    AERONAUTICAL JOURNAL, 2021, 125 (1291): : 1611 - 1630
  • [7] POWER FLOW OPTIMIZATION FOR A HYBRID-ELECTRIC PROPULSION SYSTEM
    Papadopoulos, Konstantinos I.
    Nasoulis, Christos P.
    Ntouvelos, Elissaios G.
    Gkoutzamanis, Vasilis G.
    Kalfas, Anestis I.
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 4, 2022,
  • [8] Power Flow Optimization for a Hybrid-Electric Propulsion System
    Papadopoulos, Konstantinos, I
    Nasoulis, Christos P.
    Ntouvelos, Elissaios G.
    Gkoutzamanis, Vasilis G.
    Kalfas, Anestis, I
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2022, 144 (11):
  • [9] Conceptual design of small aircraft with hybrid-electric propulsion systems
    Sziroczak, David
    Jankovics, Istvan
    Gal, Istvan
    Rohacs, Daniel
    ENERGY, 2020, 204 (204)
  • [10] On parallel hybrid-electric propulsion system for unmanned aerial vehicles
    Hung, J. Y.
    Gonzalez, L. F.
    PROGRESS IN AEROSPACE SCIENCES, 2012, 51 : 1 - 17