Brain tumor MRI images identification and classification based on the recurrent convolutional neural network

被引:1
|
作者
Vankdothu R. [1 ]
Hameed M.A. [2 ]
机构
[1] Computer Science & Engineering at Osmania University Hyderabad, India
[2] Department of Computer Science & Engineering University College of Engineering (A). Osmania University Hyderabad, India
来源
Measurement: Sensors | 2022年 / 24卷
关键词
Deep neural networks; Image classification; Magnetic resonance imaging (MRI); Medical imaging; Recurrent convolutional neural networks;
D O I
10.1016/j.measen.2022.100412
中图分类号
学科分类号
摘要
Brain tumor detection and analysis are necessary for any indicative system and have testified that exhaustive research and procedural development over time. This work needs to implement an effective automated system to improve the accuracy of tumor detection. Various segmentation algorithms have been developed to achieve and enhance the accuracy of brain tumor classification. Brain image segmentation has been recognized as a complex and challenging area in medical image processing. This paper proposes a novel automated scheme for detection and classification. The proposed method is divided into various categories: MRI image preprocessing, image segmentation, feature extraction, and image classification. The image preprocessing step is performed using an adaptive filter to remove the noise of the MRI image. Image segmentation is performed using the improved K-means clustering (IKMC) algorithm, and the gray level co-occurrence matrix (GLCM) is used for feature extraction to extract features. After extracting features from MRI images, we used a deep learning model to classify the types of images such as gliomas, meningiomas, non-tumors, and pituitary tumors. The classification process was performed using recurrent convolutional neural networks (RCNN). The proposed method provides better results for classifying brain images from a given input dataset. The experiments were conducted on the Kaggle dataset with 394 testing sets and 2870 training set MRI images. The results illustrate that the proposed method achieves a higher performance than previous methods. Finally, the proposed RCNN method is compared with the current classification methods of BP, U-Net, and RCNN. The proposed classifier obtained 95.17% accuracy in classifying brain tumor tissues from MRI images. © 2022 The Authors
引用
收藏
相关论文
共 50 条
  • [1] Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network
    Kuraparthi, Swaraja
    Reddy, Madhavi K.
    Sujatha, C. N.
    Valiveti, Himabindu
    Duggineni, Chaitanya
    Kollati, Meenakshi
    Kora, Padmavathi
    Sravan, V
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1171 - 1179
  • [2] Multiclass convolutional neural network based classification for the diagnosis of brain MRI images
    Jaspin, K.
    Selvan, Shirley
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [3] An Efficient Deep Convolutional Neural Network Approach for the Detection and Classification of Brain Tumor in MRI Images
    Haq, Ejaz Ul
    Huang, Jianjun
    Li, Kang
    Haq, Hafeez Ul
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 55 - 56
  • [4] Brain Tumor Classification Using MRI Images and Convolutional Neural Networks
    Hafeez, Muhammad Adeel
    Kayasandik, Cihan Bilge
    Dogan, Merve Yusra
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [5] Study on Brain Tumor Classification Through MRI Images Using a Deep Convolutional Neural Network
    Sharma, Kirti
    Khanna, Ketna
    Gambhir, Sapna
    Gambhir, Mohit
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [6] Classification of Brain Tumours in MRI Images using a Convolutional Neural Network
    Gupta, Isha
    Singh, Swati
    Gupta, Sheifali
    Nayak, Soumya Ranjan
    CURRENT MEDICAL IMAGING, 2023, 20
  • [7] Brain Tumor Detection using MRI Images and Convolutional Neural Network
    Lamrani, Driss
    Cherradi, Bouchaib
    El Gannour, Oussama
    Bouqentar, Mohammed Amine
    Bahatti, Lhoussain
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 452 - 460
  • [8] Brain tumor classification in MRI image using convolutional neural network
    Khan, Hassan Ali
    Jue, Wu
    Mushtaq, Muhammad
    Mushtaq, Muhammad Umer
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (05) : 6203 - 6216
  • [9] Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images
    Chelghoum, Rayene
    Ikhlef, Ameur
    Hameurlaine, Amina
    Jacquir, Sabir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2020, PT I, 2020, 583 : 189 - 200
  • [10] Brain Tumor Segmentation and Identification Using Particle Imperialist Deep Convolutional Neural Network in MRI Images
    Khemchandani, Maahi Amit
    Jadhav, Shivajirao Manikrao
    Iyer, B. R.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2022, 7 (07): : 38 - 47