On the Lang-Trotter conjecture for a class of non-generic abelian surfaces

被引:0
|
作者
Amri, Mohammed Amin [1 ]
机构
[1] Ibn Tofail Univ, Dept Math, Kenitra, Morocco
来源
RAMANUJAN JOURNAL | 2024年 / 65卷 / 01期
关键词
Lang-Trotter conjecture; Sato-Tate distribution; Abelian surfaces; Galois representations; VALUES;
D O I
10.1007/s11139-024-00884-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, we formulate a conjectural uniform error term in the Chebotarev-Sato-Tate distribution for abelian surfaces Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-isogenous to a product of not Q<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb {Q}}$$\end{document}-isogenous non-CM-elliptic curves, established by the author in Amri (Eur J Math, 2023. https://doi.org/10.1007/s40879-023-00682-5, Theorem 1.1). As a consequence, we provide a conditional direct proof to the generalized Lang-Trotter conjecture recently formulated and studied in Chen et al. (Ramanujan J, 2022).
引用
收藏
页码:69 / 79
页数:11
相关论文
共 24 条
  • [1] ON THE LANG-TROTTER CONJECTURE
    WAN, DQ
    JOURNAL OF NUMBER THEORY, 1990, 35 (03) : 247 - 268
  • [2] The square sieve and a Lang-Trotter question for generic abelian varieties
    Bloom, Samuel
    JOURNAL OF NUMBER THEORY, 2018, 191 : 119 - 157
  • [3] A Refined Version of the Lang-Trotter Conjecture
    Baier, Stephan
    Jones, Nathan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) : 433 - 461
  • [4] The square sieve and the Lang-Trotter conjecture
    Cojocaru, AC
    Fouvry, E
    Murty, MR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06): : 1155 - 1177
  • [5] EXPLICIT FORMULAS AND THE LANG-TROTTER CONJECTURE
    MURTY, VK
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1985, 15 (02) : 535 - 551
  • [6] ON THE SATO-TATE CONJECTURE FOR NON-GENERIC ABELIAN SURFACES
    Johansson, Christian
    Fite, Francesc
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (09) : 6303 - 6325
  • [7] On the Lang-Trotter conjecture for two elliptic curves
    Akbary, Amir
    Parks, James
    RAMANUJAN JOURNAL, 2019, 49 (03): : 585 - 623
  • [8] The Lang-Trotter conjecture for products of non-CM elliptic curves
    Chen, Hao
    Jones, Nathan
    Serban, Vlad
    RAMANUJAN JOURNAL, 2022, 59 (02): : 379 - 436
  • [9] Congruence class bias andthe Lang-Trotter conjecturefor families of elliptic curves
    Jarov, Seraphim
    Khadra, Alex
    Walji, Nahid
    INVOLVE, A JOURNAL OF MATHEMATICS, 2024, 17 (04):
  • [10] Abelian Integrals and Non-generic Turning Points
    Huzak, Renato
    Rojas, David
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)