Model-Based Reinforcement Learning With Isolated Imaginations

被引:0
|
作者
Pan, Minting [1 ]
Zhu, Xiangming [1 ]
Zheng, Yitao [1 ]
Wang, Yunbo [1 ]
Yang, Xiaokang [1 ]
机构
[1] Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Decoupled dynamics; model-based reinforcement learning; world model;
D O I
10.1109/TPAMI.2023.3335263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
World models learn the consequences of actions in vision-based interactive systems. However, in practical scenarios like autonomous driving, noncontrollable dynamics that are independent or sparsely dependent on action signals often exist, making it challenging to learn effective world models. To address this issue, we propose Iso-Dream++, a model-based reinforcement learning approach that has two main contributions. First, we optimize the inverse dynamics to encourage the world model to isolate controllable state transitions from the mixed spatiotemporal variations of the environment. Second, we perform policy optimization based on the decoupled latent imaginations, where we roll out noncontrollable states into the future and adaptively associate them with the current controllable state. This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild, such as self-driving cars that can anticipate the movement of other vehicles, thereby avoiding potential risks. On top of our previous work (Pan et al. 2022), we further consider the sparse dependencies between controllable and noncontrollable states, address the training collapse problem of state decoupling, and validate our approach in transfer learning setups. Our empirical study demonstrates that Iso-Dream++ outperforms existing reinforcement learning models significantly on CARLA and DeepMind Control.
引用
收藏
页码:2788 / 2803
页数:16
相关论文
共 50 条
  • [1] Model-based Reinforcement Learning: A Survey
    Moerland, Thomas M.
    Broekens, Joost
    Plaat, Aske
    Jonker, Catholijn M.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (01): : 1 - 118
  • [2] A survey on model-based reinforcement learning
    Fan-Ming LUO
    Tian XU
    Hang LAI
    Xiong-Hui CHEN
    Weinan ZHANG
    Yang YU
    Science China(Information Sciences), 2024, 67 (02) : 59 - 84
  • [3] Nonparametric model-based reinforcement learning
    Atkeson, CG
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 1008 - 1014
  • [4] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [5] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369
  • [6] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [7] Learning to Paint With Model-based Deep Reinforcement Learning
    Huang, Zhewei
    Heng, Wen
    Zhou, Shuchang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8708 - 8717
  • [8] Incremental model-based reinforcement learning with model constraint
    Yang, Zhiyou
    Fu, Mingsheng
    Qu, Hong
    Li, Fan
    Shi, Shuqing
    Hu, Wang
    NEURAL NETWORKS, 2025, 185
  • [9] Model-based reinforcement learning with dimension reduction
    Tangkaratt, Voot
    Morimoto, Jun
    Sugiyama, Masashi
    NEURAL NETWORKS, 2016, 84 : 1 - 16
  • [10] On Effective Scheduling of Model-based Reinforcement Learning
    Lai, Hang
    Shen, Jian
    Zhang, Weinan
    Huang, Yimin
    Zhang, Xing
    Tang, Ruiming
    Yu, Yong
    Li, Zhenguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34