This research was aimed at developing a base catalyst from the ash of moringa leaves that has high-performance biodiesel production. The moringa leaves were washed, dried, and then pounded into powder ash. Three temperature variations were used to calcinate the moringa leaves ash: 700 degrees C (MA-700), 800 degrees C (MA-800), and 900 degrees C (MA-900). Low-grade Bali Malapari oil (LMO) was degummed by heating and then treated with an 85% H3PO4 solution, which was referred to as DMO. The DMO oil was esterified using methanol and concentrated H2SO4 (EDMO). Because MA-900 contained the highest concentration of CaO, it was chosen to serve as the catalyst. The MA-900 was used in the production of biodiesel under the following conditions: temperature of reaction (55, 60, and 65 degrees C); oil-to-methanol mole ratio (1:3, 1:6, and 1:9); catalyst-to-oil weight ratio variables (3 wt%, 6 wt%, and 9 wt%); and reaction times (60, 90, 120, and 150 min). The biodiesel products were analyzed using FTIR and GC-MS. The best-performing conditions were conducted for catalyst usability test for three-run cycles. The highest biodiesel yield was achieved using a 1:6 oil:methanol mole ratio and a 3% catalyst/oil weight ratio at 60 degrees C reaction temperature, which lasted for 120 min and resulted in a biodiesel yield of 87.2wt% with 100% selectivity. The usability test performed on the MA-900 catalyst resulted in a biodiesel yield that was 87.2%, 86.4%, and 84.8% after three-run cycles.