C-STANCE: A Large Dataset for Chinese Zero-Shot Stance Detection

被引:0
|
作者
Zhao, Chenye [1 ]
Li, Yingjie [2 ]
Caragea, Cornelia [1 ]
机构
[1] Univ Illinois, Chicago, IL 60680 USA
[2] Westlake Univ, Hangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot stance detection (ZSSD) aims to determine whether the author of a text is in favor of, against, or neutral toward a target that is unseen during training. Despite the growing attention on ZSSD, most recent advances in this task are limited to English and do not pay much attention to other languages such as Chinese. To support ZSSD research, in this paper, we present C-STANCE that, to our knowledge, is the first Chinese dataset for zero-shot stance detection. We introduce two challenging subtasks for ZSSD: target-based ZSSD and domain-based ZSSD. Our dataset includes both noun-phrase targets and claim targets, covering a wide range of domains. We provide a detailed description and analysis of our dataset. To establish results on C-STANCE, we report performance scores using state-of-the-art deep learning models. We publicly release our dataset and code to facilitate future research.(1)
引用
收藏
页码:13369 / 13385
页数:17
相关论文
共 50 条
  • [1] EZ-STANCE: A Large Dataset for English Zero-Shot Stance Detection
    Zhao, Chenye
    Caragea, Cornelia
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 15697 - 15714
  • [2] A Survey of Zero-Shot Stance Detection
    Liu, Guangzhen
    Zhao, Kai
    Zhang, Linlin
    Bi, Xuehua
    Lv, Xiaoyi
    Chen, Cheng
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT V, NLPCC 2024, 2025, 15363 : 107 - 120
  • [3] A benchmark for Portuguese zero-shot stance detection
    Pavan, Matheus Camasmie
    Paraboni, Ivandré
    Journal of the Brazilian Computer Society, 2024, 30 (01) : 469 - 479
  • [4] Zero-shot stance detection: Paradigms and challenges
    Allaway, Emily
    McKeown, Kathleen
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 5
  • [5] Zero-Shot Stance Detection: A Dataset and Model using Generalized Topic Representations
    Allaway, Emily
    McKeown, Kathleen
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 8913 - 8931
  • [6] Zero-Shot Stance Detection via Sentiment-Stance Contrastive Learning
    Zou, Jiaying
    Zhao, Xuechen
    Xie, Feng
    Zhou, Bin
    Zhang, Zhong
    Tian, Lei
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 251 - 258
  • [7] Zero-Shot Stance Detection via Contrastive Learning
    Liang, Bin
    Chen, Zixiao
    Gui, Lin
    He, Yulan
    Yang, Min
    Xu, Ruifeng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2738 - 2747
  • [8] Tree-of-Counterfactual Prompting for Zero-Shot Stance Detection
    Weinzierl, Maxwell A.
    Harabagiu, Sanda M.
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 861 - 880
  • [9] Enhancing Zero-Shot Stance Detection with Contrastive and Prompt Learning
    Yao, Zhenyin
    Yang, Wenzhong
    Wei, Fuyuan
    ENTROPY, 2024, 26 (04)
  • [10] Adversarial Learning for Zero-Shot Stance Detection on Social Media
    Allaway, Emily
    Srikanth, Malavika
    McKeown, Kathleen
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 4756 - 4767