Dynamic programming with meta-reinforcement learning: a novel approach for multi-objective optimization

被引:1
|
作者
Wang, Qi [1 ]
Zhang, Chengwei [1 ]
Hu, Bin [2 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Dalian, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Comp Sci, Hangzhou, Peoples R China
关键词
Combinatorial optimization; Meta-learning; Reinforcement learning; Dynamic programming; PERSON REIDENTIFICATION;
D O I
10.1007/s40747-024-01469-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective optimization (MOO) endeavors to identify optimal solutions from a finite array of possibilities. In recent years, deep reinforcement learning (RL) has exhibited promise through its well-crafted heuristics in tackling NP-hard combinatorial optimization (CO) problems. Nonetheless, current methodologies grapple with two key challenges: (1) They primarily concentrate on single-objective optimization quandaries, rendering them less adaptable to the more prevalent MOO scenarios encountered in real-world applications. (2) These approaches furnish an approximate solution by imbibing heuristics, lacking a systematic means to enhance or substantiate optimality. Given these challenges, this study introduces an overarching hybrid strategy, dynamic programming with meta-reinforcement learning (DPML), to resolve MOO predicaments. The approach melds meta-learning into an RL framework, addressing multiple subproblems inherent to MOO. Furthermore, the precision of solutions is elevated by endowing exact dynamic programming with the prowess of meta-graph neural networks. Empirical results substantiate the supremacy of our methodology over previous RL and heuristics approaches, bridging the chasm between theoretical underpinnings and real-world applicability within this domain.
引用
收藏
页码:5743 / 5758
页数:16
相关论文
共 50 条
  • [1] A reinforcement learning approach for dynamic multi-objective optimization
    Zou, Fei
    Yen, Gary G.
    Tang, Lixin
    Wang, Chunfeng
    INFORMATION SCIENCES, 2021, 546 : 815 - 834
  • [2] Meta-Learning for Multi-objective Reinforcement Learning
    Chen, Xi
    Ghadirzadeh, Ali
    Bjorkman, Marten
    Jensfelt, Patric
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 977 - 983
  • [3] Multi-objective Genetic Programming for Explainable Reinforcement Learning
    Videau, Mathurin
    Leite, Alessandro
    Teytaud, Olivier
    Schoenauer, Marc
    GENETIC PROGRAMMING (EUROGP 2022), 2022, : 278 - 293
  • [4] A Dynamic Resource Allocation Strategy with Reinforcement Learning for Multimodal Multi-objective Optimization
    Dang, Qian-Long
    Xu, Wei
    Yuan, Yang-Fei
    MACHINE INTELLIGENCE RESEARCH, 2022, 19 (02) : 138 - 152
  • [5] A Dynamic Resource Allocation Strategy with Reinforcement Learning for Multimodal Multi-objective Optimization
    Qian-Long Dang
    Wei Xu
    Yang-Fei Yuan
    Machine Intelligence Research, 2022, 19 (02) : 138 - 152
  • [6] A reinforcement learning-based multi-objective optimization in an interval and dynamic environment
    Xu, Yue
    Song, Yuxuan
    Pi, Dechang
    Chen, Yang
    Qin, Shuo
    Zhang, Xiaoge
    Yang, Shengxiang
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [7] A Dynamic Resource Allocation Strategy with Reinforcement Learning for Multimodal Multi-objective Optimization
    Qian-Long Dang
    Wei Xu
    Yang-Fei Yuan
    Machine Intelligence Research, 2022, 19 : 138 - 152
  • [8] Meta-Reinforcement Learning With Dynamic Adaptiveness Distillation
    Hu, Hangkai
    Huang, Gao
    Li, Xiang
    Song, Shiji
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (03) : 1454 - 1464
  • [9] Multi-objective multicast optimization with deep reinforcement learning
    Li, Xiaole
    Tian, Jinwei
    Wang, Cuiping
    Jiang, Yinghui
    Wang, Xing
    Wang, Jiuru
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [10] Multi-Objective Optimization in Disaster Backup with Reinforcement Learning
    Yi, Shanwen
    Qin, Yao
    Wang, Hua
    MATHEMATICS, 2025, 13 (03)