Preparation and Microwave Dielectric Properties of Li2Zn2(Mo1-xWx)3O12 Ceramics

被引:0
|
作者
Wang L. [1 ]
Lv X. [1 ,2 ]
Xu J. [1 ]
Dong Z. [1 ]
Zheng Y. [1 ]
机构
[1] College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing
[2] School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing
关键词
Ion substitution; Lithium zinc molybdate; Microstructure; Microwave dielectric properties;
D O I
10.14062/j.issn.0454-5648.2019.09.12
中图分类号
学科分类号
摘要
Li2Zn2(Mo1-xWx)3O12 ceramics were prepared by a conventional solid-state ceramic route. The phase composition, microstructure and microwave dielectric properties of Li2Zn2(Mo1-xWx)3O12 ceramics were investigated. The results show that a pure lyonsite crystal structured solid solution, Li2Zn2(Mo1-xWx)3O12, is formed when the substitution amount of W6+ ions is in the range of 0 to 0.1. The relative densities, dielectric constants, and Q×f values of Li2Zn2(Mo1-xWx)3O12 ceramics initially increase and then decrease, while the temperature coefficient of resonance frequency increases gradually with the increase of W6+ ions substitution amount. The Li2Zn2(Mo0.975W0.025)3O12 ceramic sintered at 630℃ for 2h exhibits good microwave dielectric properties (i. e., εr=10.75, Q×f=63095GHz, and τf=-65×10-6/℃) when the W6+ ions substitution amount is 0.025. © 2019, Editorial Department of Journal of the Chinese Ceramic Society. All right reserved.
引用
收藏
页码:1276 / 1282
页数:6
相关论文
共 15 条
  • [1] Zhang G., Wang H., J Chin Ceram Soc, 45, 9, pp. 1256-1257, (2017)
  • [2] Zeng Q., Li W., Guo J., J Chin Ceram Soc, 37, 11, pp. 1951-1956, (2009)
  • [3] Hu J., Lu X., Zhang T., Et al., Mater Rev, 31, pp. 107-111, (2017)
  • [4] Sebastian M.T., Jantunen H., Low loss dielectric materials for LTCC applications: a review, Int Mater Rev, 53, 2, pp. 57-90, (2008)
  • [5] Xue L., Wang Y.J., Lv P.W., Et al., Growth, structures, and properties of Li<sub>2</sub>Zn<sub>2</sub>(MoO<sub>4)3</sub> and Co-doped Li<sub>2</sub>Zn<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> , Cryst Growth Des, 9, pp. 914-920, (2009)
  • [6] Zhou D., Randall C.A., Pang L.X., Et al., Microwave dielectric properties of Li<sub>2</sub>(M<sup>2+</sup>)<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub> and Li<sub>3</sub>(M<sup>3+</sup>)Mo<sub>3</sub>O<sub>12</sub> (M=Zn, Ca, Al, and In) lyonsite-related-type ceramics with ultra-low sintering temperatures, J Am Ceram Soc, 94, 3, pp. 802-805, (2011)
  • [7] Yang X.L., Zheng Y., Liu Z.L., Et al., Electron Compt Mater, 35, 11, pp. 6-11, (2016)
  • [8] Xu J., Yang X.L., Zheng Y., Et al., Microwave dielectric properties of temperature stable Li<sub>2</sub>(Zn<sub>1-x</sub>Co<sub>x</sub>)<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub> ceramics, Electron Compt Mater, 36, 11, pp. 16-37, (2017)
  • [9] Zhou D., Li W.B., Guo J., Et al., Structure, phase evolution, and microwave dielectric properties of (Ag<sub>0.5</sub>Bi<sub>0.5</sub>)(Mo<sub>0.5</sub>W<sub>0.5</sub>)O<sub>4</sub> ceramic with ultralow sintering temperature, Inorg Chem, 53, pp. 5712-5716, (2014)
  • [10] Zhou D., Guo J., Yao X., Et al., Phase evolution and and microwave dielectric properties of (Li<sub>0.5</sub>Bi<sub>0.5</sub>)(Mo<sub>1-x</sub>W<sub>x</sub>)O<sub>4</sub> (0.0≤x≤1.0) ceramics with ultralow sintering temperature, Funct Mater Lett, 5, 4, (2012)