Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures

被引:4
|
作者
Pasquale, Gabriele [1 ,2 ]
Sun, Zhe [1 ,2 ]
Migliato Marega, Guilherme [1 ,2 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [4 ]
Kis, Andras [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Elect & Microengn, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Inst Mat Sci & Engn, Lausanne, Switzerland
[3] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, Tsukuba, Japan
[4] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Tsukuba, Japan
基金
瑞士国家科学基金会;
关键词
INSE; MOBILITY;
D O I
10.1038/s41565-024-01717-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Nernst effect, a transverse thermoelectric phenomenon, has attracted significant attention for its potential in energy conversion, thermoelectrics and spintronics. However, achieving high performance and versatility at low temperatures remains elusive. Here we demonstrate a large and electrically tunable Nernst effect by combining the electrical properties of graphene with the semiconducting characteristics of indium selenide in a field-effect geometry. Our results establish a new platform for exploring and manipulating this thermoelectric effect, showcasing the first electrical tunability with an on/off ratio of 103. Moreover, photovoltage measurements reveal a stronger photo-Nernst signal in the graphene/indium selenide heterostructure compared with individual components. Remarkably, we observe a record-high Nernst coefficient of 66.4 mu V K-1 T-1 at ultralow temperatures and low magnetic fields, an important step towards applications in quantum information and low-temperature emergent phenomena. A highly tunable Nernst effect has been demonstrated in graphene/indium selenide devices, achieving a record Nernst coefficient at ultralow temperatures, highlighting its potential for quantum technologies and low-temperature applications.
引用
收藏
页码:941 / 947
页数:8
相关论文
共 50 条
  • [1] Electrically tunable Gilbert damping in van der Waals heterostructures of two-dimensional ferromagnetic metals and ferroelectrics
    Qiu, Liang
    Wang, Zequan
    Ni, Xiao-Sheng
    Yao, Dao-Xin
    Hou, Yusheng
    APPLIED PHYSICS LETTERS, 2023, 122 (10)
  • [2] Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures
    Taniguchi, Takaaki
    Li, Shisheng
    Nurdiwijayanto, Leanddas
    Kobayashi, Yu
    Saito, Tetsuki
    Miyata, Yasumitsu
    Obata, Seiji
    Saiki, Koichiro
    Yokoi, Hiroyuki
    Watanabe, Kenji
    Taniguchi, Takashi
    Tsukagoshi, Kazuhito
    Ebina, Yasuo
    Sasaki, Takayoshi
    Osada, Minoru
    ACS NANO, 2019, 13 (10) : 11214 - 11223
  • [3] Excitons in two-dimensional van der Waals heterostructures
    Liu, Hao
    Zong, Yixin
    Wang, Pan
    Wen, Hongyu
    Wu, Haibin
    Xia, Jianbai
    Wei, Zhongming
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (05)
  • [4] Tunable interlayer excitons in two-dimensional SiC/MoSSe van der Waals heterostructures
    Hou, X. R.
    Wang, S. D.
    APPLIED SURFACE SCIENCE, 2021, 546
  • [5] Two-dimensional capillaries assembled by van der Waals heterostructures
    Ma, Jiaojiao
    Guan, Kaiwen
    Jiang, Yu
    Cao, Yang
    Hu, Sheng
    NANO RESEARCH, 2023, 16 (03) : 4119 - 4129
  • [6] Magnetoresistance in two-dimensional materials and van der Waals heterostructures
    Xin, Na
    2D MATERIALS, 2024, 11 (04):
  • [7] Transfer assembly for two-dimensional van der Waals heterostructures
    Fan, Sidi
    Vu, Quoc An
    Tran, Minh Dao
    Adhikari, Subash
    Lee, Young Hee
    2D MATERIALS, 2020, 7 (02):
  • [8] Spontaneous curvature in two-dimensional van der Waals heterostructures
    Gao, Yuxiang
    Deng, Fenglin
    He, Ri
    Zhong, Zhicheng
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [9] Spintronics with two-dimensional materials and van der Waals heterostructures
    Roche, Stephan
    van Wees, Bart
    Garello, Kevin
    Valenzuela, Sergio O.
    2D MATERIALS, 2024, 11 (04):
  • [10] Two-dimensional capillaries assembled by van der Waals heterostructures
    Jiaojiao Ma
    Kaiwen Guan
    Yu Jiang
    Yang Cao
    Sheng Hu
    Nano Research, 2023, 16 : 4119 - 4129