ON UNRAMIFIED GALOIS 2-GROUPS OVER Z2-EXTENSIONS OF SOME IMAGINARYBIQUADRATIC NUMBER FIELDS

被引:0
|
作者
Mouhib, A. [1 ]
Rouas, S. [1 ]
机构
[1] Sidi Mohammed Ben Abdellah Univ, Sci & Engn Lab, Polydisciplinary Fac Taza, Taza Gare PB 1223, Taza, Morocco
关键词
2-group rank; 2-class group; imaginary biquadratic number field; Iwasawa module;
D O I
10.1007/s10474-024-01425-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an imaginary biquadratic number field K = Q(root-q, root d), where q > 3 is a prime congruent to 3 (mod 8), and d is an odd square-free integer which is not equal to q, let K(infinity )be the cyclotomic Z(2)-extension of K. For any integer n >= 0, we denote by K(n )the nth layer of K-infinity/K. We investigate the rank of the 2-class group of K-n, then we draw the list of all number fields K such that the Galois group of the maximal unramified pro-2-extension over their cyclotomic Z(2)-extension is metacyclic pro-2 group.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 50 条