Frequency Modulation Aggregation for Federated Learning

被引:0
|
作者
Martinez-Gost, Marc [1 ,2 ]
Perez-Neira, Ana [1 ,2 ,3 ]
Lagunas, Miguel Angel [2 ]
机构
[1] Ctr Tecnol Telecomunicac Catalunya, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona, Spain
[3] ICREA Acad, Barcelona, Spain
关键词
Frequency modulation; Federated Learning; AirComp; TBMA;
D O I
10.1109/GLOBECOM54140.2023.10437413
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated edge learning (FEEL) is a framework for training models in a distributed fashion using edge devices and a server that coordinates the learning process. In FEEL, edge devices periodically transmit model parameters to the server, which aggregates them to generate a global model. To reduce the burden of transmitting high-dimensional data by many edge devices, a broadband analog transmission scheme has been proposed. The devices transmit the parameters simultaneously using a linear analog modulation, which are aggregated by the superposition nature of the wireless medium. However, linear analog modulations incur in an excessive power consumption for edge devices and are not suitable for current digital wireless systems. To overcome this issue, in this paper we propose a digital frequency broadband aggregation. The scheme integrates a Multiple Frequency Shift Keying (MFSK) at the transmitters and a type-based multiple access (TBMA) at the receiver. Using concurrent transmission, the server can recover the type (i.e., a histogram) of the transmitted parameters and compute any aggregation function to generate a shared global model. We provide an extensive analysis of the communication scheme in an additive white Gaussian noise (AWGN) channel and compare it with linear analog modulations. Our experimental results show that the proposed scheme achieves no drop in performance up to -10 dB and outperforms the analog counterparts, while requiring 14 dB less in peak-to-average power ratio (PAPR) than linear analog modulations.
引用
收藏
页码:1878 / 1883
页数:6
相关论文
共 50 条
  • [1] Robust Aggregation for Federated Learning
    Pillutla, Krishna
    Kakade, Sham M.
    Harchaoui, Zaid
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 1142 - 1154
  • [2] Robust Aggregation Function in Federated Learning
    Taheri, Rahim
    Arabikhan, Farzad
    Gegov, Alexander
    Akbari, Negar
    ADVANCES IN INFORMATION SYSTEMS, ARTIFICIAL INTELLIGENCE AND KNOWLEDGE MANAGEMENT, ICIKS 2023, 2024, 486 : 168 - 175
  • [3] Lazy Aggregation for Heterogeneous Federated Learning
    Xu, Gang
    Kong, De-Lun
    Chen, Xiu-Bo
    Liu, Xin
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [4] Adapted Weighted Aggregation in Federated Learning
    Tang, Yitong
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23763 - 23765
  • [5] Federated Learning with Buffered Asynchronous Aggregation
    Nguyen, John
    Malik, Kshitiz
    Zhan, Hongyuan
    Yousefpour, Ashkan
    Rabbat, Michael
    Malek, Mani
    Huba, Dzmitry
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [6] Evaluation of Federated Learning Aggregation Algorithms
    Ek, Sannara
    Portet, Francois
    Lalanda, Philippe
    Vega, German
    UBICOMP/ISWC '20 ADJUNCT: PROCEEDINGS OF THE 2020 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2020 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2020, : 638 - 643
  • [7] Adaptive Modulation for Wireless Federated Learning
    Xu, Xinyi
    Yu, Guanding
    Liu, Shengli
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [8] On Social Consensus Mechanisms for Federated Learning Aggregation
    de Camargo, Igor Felipe
    Antunes, Rodolfo Stoffel
    Ramos, Gabriel de O.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 236 - 250
  • [9] Optimized Edge Aggregation for Hierarchical Federated Learning
    Xu, Bo
    Xia, Wenchao
    Wen, Wanli
    Zhao, Haitao
    Zhu, Hongbo
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [10] Joint Edge Association and Aggregation Frequency for Energy-Efficient Hierarchical Federated Learning by Deep Reinforcement Learning
    Ren, Yijing
    Wu, Changxiang
    So, Daniel K. C.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3639 - 3645