A new attention-based CNN_GRU model for spatial–temporal PM2.5 prediction

被引:0
|
作者
Sara Haghbayan [1 ]
Mehdi Momeni [2 ]
Behnam Tashayo [1 ]
机构
[1] University of Isfahan,Department of Civil Engineering and Transportation
[2] University of Isfahan,Department of Civil Engineering and Transportation
关键词
PM; Imputation; Deep learning; Attention mechanism; Machine learning algorithms; Prediction spatial–temporal;
D O I
10.1007/s11356-024-34690-z
中图分类号
学科分类号
摘要
Accurately predicting the spatial-temporal distribution of PM2.5 is challenging due to missing data and selecting an appropriate modeling method. Effective imputation of missing data must consider the relationships between variables while preserving their inherent variability and uncertainty. In this study, we employed machine learning techniques to impute missing data by analyzing the relationships between meteorological variables and other pollutants. Subsequently, we introduced an innovative spatiotemporal hybrid model, AC_GRU, which integrates a one-dimensional convolutional neural network (CNN), GRU, and an attention-based network to predict PM2.5 concentrations in urban areas. The AC_GRU model utilizes meteorological variables, PM2.5 concentrations from nearby air quality monitoring stations, and concentrations of other pollutants as inputs. This approach allows the model to learn spatiotemporal correlations within the time-series data, enhancing the accuracy of PM2.5 predictions. Additionally, the attention mechanism improves prediction accuracy by automatically weighting the past input variables based on their importance for future PM2.5 predictions. The experimental results demonstrate that our AC_GRU model outperforms state-of-the-art methods, making it a valuable tool for urban air quality management and public health protection.
引用
收藏
页码:53140 / 53155
页数:15
相关论文
共 50 条
  • [1] Urban PM2.5 Concentration Prediction via Attention-Based CNN-LSTM
    Li, Songzhou
    Xie, Gang
    Ren, Jinchang
    Guo, Lei
    Yang, Yunyun
    Xu, Xinying
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [2] Attention-based parallel networks (APNet) for PM2.5 spatiotemporal prediction
    Zhu, Jiaqi
    Deng, Fang
    Zhao, Jiachen
    Zheng, Hao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 769
  • [3] A Prediction of PM2.5 Concentration Based On Temporal-spatial Fusion Model
    Su, Sifan
    Zhu, Cui
    Zhu, Wenjun
    Kaunda, Lubuto
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2018, : 31 - 35
  • [4] PM2.5 Concentration Prediction Based on CNN-BiLSTM and Attention Mechanism
    Zhang, Jinsong
    Peng, Yongtao
    Ren, Bo
    Li, Taoying
    ALGORITHMS, 2021, 14 (07)
  • [5] A hybrid model for spatial–temporal prediction of PM2.5 based on a time division method
    B. Liu
    M. Wang
    H. W. Guesgen
    International Journal of Environmental Science and Technology, 2023, 20 : 12195 - 12206
  • [6] Short-term Wind Speed Prediction Based on CNN_GRU Model
    Huai Nana
    Dong Lei
    Wang Lijie
    Hao Ying
    Dai Zhongjian
    Wang Bo
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 2243 - 2247
  • [7] A PM2.5 spatiotemporal prediction model based on mixed graph convolutional GRU and self-attention network
    Zhao, Guyu
    Yang, Xiaoyuan
    Shi, Jiansen
    He, Hongdou
    Wang, Qian
    ENVIRONMENTAL POLLUTION, 2025, 368
  • [8] An attention-based domain spatial-temporal meta-learning (ADST-ML) approach for PM2.5 concentration dynamics prediction
    Yang, Xingyu
    Zhang, Zhongrong
    URBAN CLIMATE, 2023, 47
  • [9] An Improved Attention-Based Integrated Deep Neural Network for PM2.5 Concentration Prediction
    Shi, Pengfei
    Fang, Xiaolong
    Ni, Jianjun
    Zhu, Jinxiu
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [10] A hybrid model for spatial-temporal prediction of PM2.5 based on a time division method
    Liu, B.
    Wang, M.
    Guesgen, H. W.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (11) : 12195 - 12206