Concerning the high demand for lightweight and multifunctional properties of engineering structures, the coral skeleton-inspired sheet-based (CSS) structure, which was a novel bio-mimicking coral skeleton wall-septa architecture with a unique ability to resist wave shocks was fabricated using NiTi alloy by laser powder bed fusion (LPBF) technology. The effects of laser energy density (LED) on surface morphologies, microstructures, phase transformation behavior, and mechanical properties of LPBF-fabricated CSS structures were systematically investigated. The results indicated that the size deviation was predominantly governed by powder adhesion and step effect. NiTi CSS structures with LED of 71 J<middle dot>mm-3 possessed superior compressive modulus (similar to 100 MPa), ultimate strength (similar to 13 MPa), and energy absorption efficiency (similar to 69%). The compression fracture mechanism of the LPBF-fabricated NiTi CSS structures was revealed to be predominantly brittle fracture accompanied by ductile fracture. Furthermore, the Ni4Ti3 nanoprecipitates induced the precipitation strengthening effect, enabling better shape memory response at LED of 71 J<middle dot>mm-3, with a recoverable strain of 3.63% and recovery ratio of 90.8%, after heating under a pre-strain of 4%. This study highlights the importance of a bionic design strategy for enhancing the mechanical properties of NiTi components and offers the possibility to tailor its functional properties.