Properties, estimation, and applications of the extended log-logistic distribution

被引:1
|
作者
Kariuki, Veronica [1 ]
Wanjoya, Anthony [2 ]
Ngesa, Oscar [3 ]
Alharthi, Amirah Saeed [4 ]
Aljohani, Hassan M. [4 ]
Afify, Ahmed Z. [5 ]
机构
[1] Pan African Inst Basic Sci Technol & Innovat, Dept Math, Naiobi 00200, Kenya
[2] Jomo Kenyatta Univ Agr & Technol, Dept Stat & Actuarial Sci, Nairobi 00200, Kenya
[3] Taita Taveta Univ, Dept Math Stat & Phys Sci, Voi 80300, Kenya
[4] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[5] Benha Univ, Dept Stat Math & Insurance, Banha 13511, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Log-logistic distribution; Alpha-power family; Survival data; Maximum likelihood estimation; Order statistics; WEIBULL DISTRIBUTION PROPERTIES; FAMILY; REGRESSION; EXTENSION;
D O I
10.1038/s41598-024-68843-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the exponentiated alpha-power log-logistic (EAPLL) distribution, which extends the log-logistic distribution. The EAPLL distribution emphasizes its suitability for survival data modeling by providing analytical simplicity and accommodating both monotone and non-monotone failure rates. We derive some of its mathematical properties and test eight estimation methods using an extensive simulation study. To determine the best estimation approach, we rank mean estimates, mean square errors, and average absolute biases on a partial and overall ranking. Furthermore, we use the EAPLL distribution to examine three real-life survival data sets, demonstrating its superior performance over competing log-logistic distributions. This study adds vital insights to survival analysis methodology and provides a solid framework for modeling various survival data scenarios.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] The Extended Log-Logistic Distribution: Properties and Application
    Lima, Stenio R.
    Cordeiro, Gauss M.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2017, 89 (01): : 3 - 17
  • [2] The Extended Log-Logistic Distribution: Inference and Actuarial Applications
    Alfaer, Nada M.
    Gemeay, Ahmed M.
    Aljohani, Hassan M.
    Afify, Ahmed Z.
    MATHEMATICS, 2021, 9 (12)
  • [3] Improved parameter estimation of the log-logistic distribution with applications
    Joseph Reath
    Jianping Dong
    Min Wang
    Computational Statistics, 2018, 33 : 339 - 356
  • [4] Robust Explicit Estimation of the Log-Logistic Distribution with Applications
    Ma, Zhuanzhuan
    Wang, Min
    Park, Chanseok
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2023, 17 (02)
  • [5] Improved parameter estimation of the log-logistic distribution with applications
    Reath, Joseph
    Dong, Jianping
    Wang, Min
    COMPUTATIONAL STATISTICS, 2018, 33 (01) : 339 - 356
  • [6] Robust Explicit Estimation of the Log-Logistic Distribution with Applications
    Zhuanzhuan Ma
    Min Wang
    Chanseok Park
    Journal of Statistical Theory and Practice, 2023, 17
  • [7] The Odd Log-Logistic Generalized Gompertz Distribution: Properties, Applications and Different Methods of Estimation
    Alizadeh, Morad
    Benkhelifa, Lazhar
    Rasekhi, Mahdi
    Hosseini, Bistoon
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2020, 8 (03) : 295 - 317
  • [8] The Odd Log-Logistic Generalized Gompertz Distribution: Properties, Applications and Different Methods of Estimation
    Morad Alizadeh
    Lazhar Benkhelifa
    Mahdi Rasekhi
    Bistoon Hosseini
    Communications in Mathematics and Statistics, 2020, 8 : 295 - 317
  • [9] The Odd Log-Logistic Logarithmic Lindley Distribution: Properties And Applications
    Marganpoor, Shandieh
    Ranjbar, Vahid
    Alizadeh, Morad
    Abdollahnezhad, Kamel
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 545 - 563
  • [10] THE ODD LOG-LOGISTIC GOMPERTZ LIFETIME DISTRIBUTION: PROPERTIES AND APPLICATIONS
    Alizadeh, Morad
    Tahmasebi, Saeid
    Kazemi, Mohammad Reza
    Nejad, Hamideh Siyamar Arabi
    Hamedani, G. Hossein G.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (01) : 55 - 80