COVID-19 Detection Systems Based on Speech and Image Data Using Deep Learning Algorithms

被引:0
|
作者
Akhtar, Farooq [1 ]
Mahum, Rabbia [1 ]
Ragab, Adham E. [2 ]
Butt, Faisal Shafique [3 ]
El-Meligy, Mohammed A. [4 ,5 ]
Hassan, Haseeb [6 ]
机构
[1] Univ Engn & Technol, Dept Comp Sci, Taxila, Pakistan
[2] King Saud Univ, Coll Engn, Ind Engn Dept, POB 800, Riyadh 11421, Saudi Arabia
[3] COMSATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt, Pakistan
[4] Jordan Univ, Res Ctr, Amman, Jordan
[5] Appl Sci Private Univ, Appl Sci Res Ctr, Amman, Jordan
[6] Shenzhen Technol Univ SZTU, Coll Big Data & Internet, Shenzhen, Peoples R China
关键词
CNN; CT scan; X-rays; COVID-19; Deep learning; HCI; CLASSIFICATION;
D O I
10.1007/s44196-024-00609-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
COVID-19 is a worldwide epidemic that seriously affected the lives of people. Since its inception, physicians have tried their best to trace the virus and reduce its spread. Several diagnostic approaches have been reported to detect the coronavirus in research, clinical, and public health laboratories. Although the existing systems aid medical experts in the diagnosis, they still lack precise detection and may fail to detect COVID-19 in a timely manner. Therefore, in this study, we recommend two approaches i.e., the first approach is based on the VGGish network that focuses on vocal signals, such as breathing and coughing, and the second approach is based on ResNet50, which takes chest X-rays as input. With the help of VGGish, the patient's cough, voice, and respiration audios have been classified as patient and non-patient achieving an accuracy of more than 98%. We also assessed the performance of several methods for X-ray classification, such as ResNet50, VGG16, VGG19, Densnet201, Inceptionv3, Darknet, GoogleNet, squeezeNet, and Alex-Net. TheResNet50 outpaced all supplementary CNN models with a precision of 94%. However, when we took both types of inputs simultaneously, the accuracy for detection was increased to 99.7%. After extensive experimentation, we believe that our proposed hybrid method is robust enough to take X-rays and audio as mel-spectrograms and identify COVID-19 at early stages, attaining an accuracy of 99.7%.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] COVID-19 Detection Systems Using Deep-Learning Algorithms Based on Speech and Image Data
    Nassif, Ali Bou
    Shahin, Ismail
    Bader, Mohamed
    Hassan, Abdelfatah
    Werghi, Naoufel
    MATHEMATICS, 2022, 10 (04)
  • [2] Detection of COVID-19 Using Deep Learning Algorithms on Chest Radiographs
    Chiu, Wan Hang Keith
    Vardhanabhuti, Varut
    Poplavskiy, Dmytro
    Yu, Philip Leung Ho
    Du, Richard
    Yap, Alistair Yun Hee
    Zhang, Sailong
    Fong, Ambrose Ho-Tung
    Chin, Thomas Wing-Yan
    Lee, Jonan Chun Yin
    Leung, Siu Ting
    Lo, Christine Shing Yen
    Lui, Macy Mei-Sze
    Fang, Benjamin Xin Hao
    Ng, Ming-Yen
    Kuo, Michael D.
    JOURNAL OF THORACIC IMAGING, 2020, 35 (06) : 369 - 376
  • [3] Deep Learning and Classification Algorithms for COVID-19 Detection
    Sidheeque, Mohammed
    Sumathy, P.
    Gafur, Abdul M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 346 - 350
  • [4] Intelligent Detection for CT Image of COVID-19 using Deep Learning
    Liu, Jingxin
    Zhang, Zhong
    Zu, Lihui
    Wang, Hairihan
    Zhong, Yutong
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 76 - 81
  • [5] COVID-19 detection using cough sound analysis and deep learning algorithms
    Rao, Sunil
    Narayanaswamy, Vivek
    Esposito, Michael
    Thiagarajan, Jayaraman J.
    Spanias, Andreas
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2021, 15 (04): : 655 - 665
  • [6] X-Ray image-based COVID-19 detection using deep learning
    Aleka Melese Ayalew
    Ayodeji Olalekan Salau
    Yibeltal Tamyalew
    Bekalu Tadele Abeje
    Nigus Woreta
    Multimedia Tools and Applications, 2023, 82 : 44507 - 44525
  • [7] X-Ray image-based COVID-19 detection using deep learning
    Ayalew, Aleka Melese
    Salau, Ayodeji Olalekan
    Tamyalew, Yibeltal
    Abeje, Bekalu Tadele
    Woreta, Nigus
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 44507 - 44525
  • [8] Multimodal marvels of deep learning in medical diagnosis using image, speech, and text: A comprehensive review of COVID-19 detection
    Islam, Md Shofiqul
    Hasan, Khondokar Fida
    Shajeeb, Hasibul Hossain
    Rana, Humayan Kabir
    Rahman, Md. Saifur
    Hasan, Md. Munirul
    Azad, A. K. M.
    Abdullah, Ibrahim
    Moni, Mohammad Ali
    AI OPEN, 2025, 6 : 12 - 44
  • [9] X-ray image based COVID-19 detection using evolutionary deep learning approach
    Jalali, Seyed Mohammad Jafar
    Ahmadian, Milad
    Ahmadian, Sajad
    Hedjam, Rachid
    Khosravi, Abbas
    Nahavandi, Saeid
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 201
  • [10] COVID-19 Automatic Detection Using Deep Learning
    Sanajalwe, Yousef
    Anbar, Mohammed
    Al-E'mari, Salam
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 15 - 35