Trajectory Unified Transformer for Pedestrian Trajectory Prediction

被引:17
|
作者
Shi, Liushuai [1 ]
Wang, Le [1 ]
Zhou, Sanping [1 ]
Hua, Gang [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Natl Engn Res Ctr Visual Informat & Applicat, Natl Key Lab Human Machine Hybrid Augmented Intel, Xian, Peoples R China
[2] Wormpex AI Res, Bellevue, WA USA
基金
国家重点研发计划;
关键词
D O I
10.1109/ICCV51070.2023.00887
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pedestrian trajectory prediction is an essential link to understanding human behavior. Recent work achieves state-of-the-art performance gained from hand-designed post-processing, e.g., clustering. However, this post-processing suffers from expensive inference time and neglects the probability that the predicted trajectory disturbs downstream safety decisions. In this paper, we present Trajectory Unified TRansformer, called TUTR, which unifies the trajectory prediction components, social interaction, and multimodal trajectory prediction, into a transformer encoder-decoder architecture to effectively remove the need for post-processing. Specifically, TUTR parses the relationships across various motion modes using an explicit global prediction and an implicit mode-level transformer encoder. Then, TUTR attends to the social interactions with neighbors by a social-level transformer decoder. Finally, a dual prediction forecasts diverse trajectories and corresponding probabilities in parallel without post-processing. TUTR achieves state-of-the-art accuracy performance and improvements in inference speed of about 10x - 40x compared to previous well-tuned state-of-the-art methods using post-processing.
引用
收藏
页码:9641 / 9650
页数:10
相关论文
共 50 条
  • [1] A Unified Environmental Network for Pedestrian Trajectory Prediction
    Su, Yuchao
    Li, Yuanman
    Wang, Wei
    Zhou, Jiantao
    Li, Xia
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4970 - 4978
  • [2] Multimodal Transformer Network for Pedestrian Trajectory Prediction
    Yin, Ziyi
    Liu, Ruijin
    Xiong, Zhiliang
    Yuan, Zejian
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1259 - 1265
  • [3] Pedestrian Trajectory Prediction via Spatial Interaction Transformer Network
    Su, Tong
    Meng, Yu
    Xu, Yan
    2021 IEEE INTELLIGENT VEHICLES SYMPOSIUM WORKSHOPS (IV WORKSHOPS), 2021, : 154 - 159
  • [4] Crossmodal Transformer Based Generative Framework for Pedestrian Trajectory Prediction
    Su, Zhaoxin
    Huang, Gang
    Zhang, Sanyuan
    Hua, Wei
    Proceedings - IEEE International Conference on Robotics and Automation, 2022, : 2337 - 2343
  • [5] Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction
    Liu, Yu
    Zhang, Yuexin
    Li, Kunming
    Qiao, Yongliang
    Worrall, Stewart
    Li, You-Fu
    Kong, He
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 4360 - 4366
  • [6] CONTEXT-AWARE PEDESTRIAN TRAJECTORY PREDICTION WITH MULTIMODAL TRANSFORMER
    Damirchi, Haleh
    Greenspan, Michael
    Etemad, Ali
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2535 - 2539
  • [7] Crossmodal Transformer Based Generative Framework for Pedestrian Trajectory Prediction
    Su, Zhaoxin
    Huang, Gang
    Zhang, Sanyuan
    Hua, Wei
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2337 - 2343
  • [8] Context-Aware Pedestrian Trajectory Prediction with Multimodal Transformer
    Damirchi, Haleh
    Greenspan, Michael
    Etemad, Ali
    Proceedings - International Conference on Image Processing, ICIP, 2023, : 2535 - 2539
  • [9] CONTEXT-AWARE PEDESTRIAN TRAJECTORY PREDICTION WITH MULTIMODAL TRANSFORMER
    Damirchi, Haleh
    Greenspan, Michael
    Etemad, Ali
    arXiv, 2023,
  • [10] ForceFormer: Exploring Social Force and Transformer for Pedestrian Trajectory Prediction
    Zhang, Weicheng
    Cheng, Hao
    Johora, Fatema T.
    Sester, Monika
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,